Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies
Tài liệu tham khảo
Aggen, 2010, Synthesis and spectrum of the neoglycoside ACHN-490, Antimicrob Agents Chemother, 54, 4636, 10.1128/AAC.00572-10
Aldred, 2014, Mechanism of quinolone action and resistance, Biochemistry, 53, 1565, 10.1021/bi5000564
Anderl, 2000, Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin, Antimicrob Agents Chemother, 44, 1818, 10.1128/AAC.44.7.1818-1824.2000
Aoki, 2013, Characterization of antimicrobial peptides toward the development of novel antibiotics, Pharmaceuticals (Basel), 6, 1055, 10.3390/ph6081055
Arber, 2014, Horizontal gene transfer among bacteria and its role in biological evolution, Life (Basel), 4, 217
Askoura, 2011, Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa, Libyan J Med, 6, 10.3402/ljm.v6i0.5870
Bala, 2011, Inhibition of quorum sensing in Pseudomonas aeruginosa by azithromycin and its effectiveness in urinary tract infections, J Med Microbiol, 60, 300, 10.1099/jmm.0.025387-0
Balaban, 2013, A problem of persistence: still more questions than answers?, Nat Rev Microbiol, 11, 587, 10.1038/nrmicro3076
Barbier, 2013, Hospital-acquired pneumonia and ventilator-associated pneumonia: recent advances in epidemiology and management, Curr Opin Pulm Med, 19, 216, 10.1097/MCP.0b013e32835f27be
Baum, 2009, Effect of MexXY overexpression on ceftobiprole susceptibility in Pseudomonas aeruginosa, Antimicrob Agents Chemother, 53, 2785, 10.1128/AAC.00018-09
Bell, 1991, Pseudomonas aeruginosa outer membrane protein OprH: expression from the cloned gene and function in EDTA and gentamicin resistance, J Bacteriol, 173, 6657, 10.1128/jb.173.21.6657-6664.1991
Bellido, 1992, Reevaluation, using intact cells, of the exclusion limit and role of porin OprF in Pseudomonas aeruginosa outer membrane permeability, J Bacteriol, 174, 5196, 10.1128/jb.174.16.5196-5203.1992
Berrazeg, 2015, Mutations in beta-Lactamase AmpC increase resistance of pseudomonas aeruginosa Isolates to Antipseudomonal Cephalosporins, Antimicrob Agents Chemother, 59, 6248, 10.1128/AAC.00825-15
Blair, 2015, Molecular mechanisms of antibiotic resistance, Nat Rev Microbiol, 13, 42, 10.1038/nrmicro3380
Boll, 1994, 4-Amino-4-deoxy-L-arabinose in LPS of enterobacterial R-mutants and its possible role for their polymyxin reactivity, FEMS Immunol Med Microbiol, 8, 329
Bonomo, 2006, Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa, Clin Infect Dis, 43, S49, 10.1086/504477
Bouffartigues, 2015, The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level, Front Microbiol, 6, 630, 10.3389/fmicb.2015.00630
Braz, 2016, Mutations in NalC induce MexAB-OprM overexpression resulting in high level of aztreonam resistance in environmental isolates of Pseudomonas aeruginosa, FEMS Microbiol Lett, 363, 10.1093/femsle/fnw166
Breidenstein, 2011, Pseudomonas aeruginosa: all roads lead to resistance, Trends Microbiol, 19, 419, 10.1016/j.tim.2011.04.005
Brown, 2012, Nanoparticles functionalized with ampicillin destroy multiple-antibiotic-resistant isolates of Pseudomonas aeruginosa and Enterobacter aerogenes and methicillin-resistant Staphylococcus aureus, Appl Environ Microbiol, 78, 2768, 10.1128/AEM.06513-11
Bruchmann, 2013, Quantitative contributions of target alteration and decreased drug accumulation to Pseudomonas aeruginosa fluoroquinolone resistance, Antimicrob Agents Chemother, 57, 1361, 10.1128/AAC.01581-12
Bullen, 1978, Role of iron in bacterial infection, Curr Top Microbiol Immunol, 80, 1
Bush, 2010, Updated functional classification of beta-lactamases, Antimicrob Agents Chemother, 54, 969, 10.1128/AAC.01009-09
Cabot, 2011, Overexpression of AmpC and efflux pumps in Pseudomonas aeruginosa isolates from bloodstream infections: prevalence and impact on resistance in a Spanish multicenter study, Antimicrob Agents Chemother, 55, 1906, 10.1128/AAC.01645-10
Cabot, 2016, Evolution of Pseudomonas aeruginosa Antimicrobial resistance and fitness under low and high mutation rates, Antimicrob Agents Chemother, 60, 1767, 10.1128/AAC.02676-15
Cady, 2012, The CRISPR/Cas adaptive immune system of Pseudomonas aeruginosa mediates resistance to naturally occurring and engineered phages, J Bacteriol, 194, 5728, 10.1128/JB.01184-12
Cady, 2011, Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates, Microbiology, 157, 430, 10.1099/mic.0.045732-0
Carnoy, 1994, Pseudomonas aeruginosa outer membrane adhesins for human respiratory mucus glycoproteins, Infect Immun, 62, 1896, 10.1128/IAI.62.5.1896-1900.1994
Castanheira, 2009, Antimicrobial activities of doripenem and other carbapenems against Pseudomonas aeruginosa, other nonfermentative bacilli, and Aeromonas spp, Diagn Microbiol Infect Dis, 63, 426, 10.1016/j.diagmicrobio.2009.01.026
Castanheira, 2004, Molecular characterization of a beta-lactamase gene, blaGIM-1, encoding a new subclass of metallo-beta-lactamase, Antimicrob Agents Chemother, 48, 4654, 10.1128/AAC.48.12.4654-4661.2004
Cavalcanti, 2015, Mutational and acquired carbapenem resistance mechanisms in multidrug resistant Pseudomonas aeruginosa clinical isolates from Recife, Brazil, Mem Inst Oswaldo Cruz, 110, 1003, 10.1590/0074-02760150233
Chastre, 2008, Efficacy and safety of intravenous infusion of doripenem versus imipenem in ventilator-associated pneumonia: a multicenter, randomized study, Crit Care Med, 36, 1089, 10.1097/CCM.0b013e3181691b99
Chatterjee, 2016, Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options, Int J Med Microbiol, 306, 48, 10.1016/j.ijmm.2015.11.004
Chemani, 2009, Role of LecA and LecB lectins in Pseudomonas aeruginosa-induced lung injury and effect of carbohydrate ligands, Infect Immun, 77, 2065, 10.1128/IAI.01204-08
Chen, 2009, Identification and characterization of class 1 integrons among Pseudomonas aeruginosa isolates from patients in Zhenjiang, China, Int J Infect Dis, 13, 717, 10.1016/j.ijid.2008.11.014
Chitambar, 2010, Medical applications and toxicities of gallium compounds, Int J Environ Res Public Health, 7, 2337, 10.3390/ijerph7052337
Christiaen, 2014, Bacteria that inhibit quorum sensing decrease biofilm formation and virulence in Pseudomonas aeruginosa PAO1, Pathog Dis, 70, 271, 10.1111/2049-632X.12124
Chung, 2017, Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria, J Microbiol Immunol Infect, 50, 405, 10.1016/j.jmii.2016.12.005
Cigana, 2016, Efficacy of the Novel Antibiotic POL7001 in Preclinical Models of Pseudomonas aeruginosa Pneumonia, Antimicrob Agents Chemother, 60, 4991, 10.1128/AAC.00390-16
Citorik, 2014, Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases, Nat Biotechnol, 32, 1141, 10.1038/nbt.3011
Clokie, 2011, Phages in nature, Bacteriophage, 1, 31, 10.4161/bact.1.1.14942
Cornelis, 2013, Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections, Front Cell Infect Microbiol, 3, 75, 10.3389/fcimb.2013.00075
Cox, 2018
Das, 2013, The roles of extracellular DNA in the structural integrity of extracellular polymeric substance and bacterial biofilm development, Environ Microbiol Rep, 5, 778, 10.1111/1758-2229.12085
Das, 2010, Role of extracellular DNA in initial bacterial adhesion and surface aggregation, Appl Environ Microbiol, 76, 3405, 10.1128/AEM.03119-09
Daury, 2016, Tripartite assembly of RND multidrug efflux pumps, Nat Commun, 7, 10731, 10.1038/ncomms10731
Davies, 2002, Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence, Paediatr Respir Rev, 3, 128, 10.1016/S1526-0550(02)00003-3
Davies, 2007, Cystic fibrosis, BMJ, 335, 1255, 10.1136/bmj.39391.713229.AD
Delcour, 2009, Outer membrane permeability and antibiotic resistance, Biochim Biophys Acta, 1794, 808, 10.1016/j.bbapap.2008.11.005
van Delden, 2012, Azithromycin to prevent Pseudomonas aeruginosa ventilator-associated pneumonia by inhibition of quorum sensing: a randomized controlled trial, Intensive Care Med, 38, 1118, 10.1007/s00134-012-2559-3
DeLeon, 2009, Gallium maltolate treatment eradicates Pseudomonas aeruginosa infection in thermally injured mice, Antimicrob Agents Chemother, 53, 1331, 10.1128/AAC.01330-08
Diggle, 2006, The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa, Environ Microbiol, 8, 1095, 10.1111/j.1462-2920.2006.001001.x
Donlan, 2002, Biofilms: microbial life on surfaces, Emerg Infect Dis, 8, 881, 10.3201/eid0809.020063
Doring, 2007, A double-blind randomized placebo-controlled phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients, Proc Natl Acad Sci U S A, 104, 11020, 10.1073/pnas.0702403104
Doring, 2008, Vaccines and immunotherapy against Pseudomonas aeruginosa, Vaccine, 26, 1011, 10.1016/j.vaccine.2007.12.007
Dorr, 2010, Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli, PLoS Biol, 8, 10.1371/journal.pbio.1000317
Dosler, 2014, Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides, Peptides, 62, 32, 10.1016/j.peptides.2014.09.021
Drawz, 2010, Three decades of beta-lactamase inhibitors, Clin Microbiol Rev, 23, 160, 10.1128/CMR.00037-09
Dreier, 2015, Interaction of antibacterial compounds with RND e ffl ux pumps in Pseudomonas aeruginosa, Front Microbiol, 6, 660, 10.3389/fmicb.2015.00660
Drenkard, 2003, Antimicrobial resistance of Pseudomonas aeruginosa biofilms, Microbes Infect, 5, 1213, 10.1016/j.micinf.2003.08.009
Drenkard, 2002, Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation, Nature, 416, 740, 10.1038/416740a
Dupont, 2005, Bacteriostatic and bactericidal activities of eight fluoroquinolones against MexAB-OprM-overproducing clinical strains of Pseudomonas aeruginosa, J Antimicrob Chemother, 55, 518, 10.1093/jac/dki030
El Solh, 2009, Update on the treatment of Pseudomonas aeruginosa pneumonia, J Antimicrob Chemother, 64, 229, 10.1093/jac/dkp201
El'Garch, 2007, Cumulative effects of several nonenzymatic mechanisms on the resistance of Pseudomonas aeruginosa to aminoglycosides, Antimicrob Agents Chemother, 51, 1016, 10.1128/AAC.00704-06
Elsaesser, 2012, Toxicology of nanoparticles, Adv Drug Deliv Rev, 64, 129, 10.1016/j.addr.2011.09.001
El-Shaer, 2016, Control of quorum sensing and virulence factors of Pseudomonas aeruginosa using phenylalanine arginyl beta-naphthylamide, J Med Microbiol, 65, 1194, 10.1099/jmm.0.000327
Fang, 2014, OprD mutations and inactivation in imipenem-resistant Pseudomonas aeruginosa isolates from China, Infect Genet Evol, 21, 124, 10.1016/j.meegid.2013.10.027
Fernandez, 2012, Adaptive and mutational resistance: role of porins and efflux pumps in drug resistance, Clin Microbiol Rev, 25, 661, 10.1128/CMR.00043-12
Fong, 2017, Activity of Bacteriophages in Removing biofilms of Pseudomonas aeruginosa Isolates from Chronic Rhinosinusitis patients, Front Cell Infect Microbiol, 7, 418, 10.3389/fcimb.2017.00418
Fu, 2010, Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system, Antimicrob Agents Chemother, 54, 397, 10.1128/AAC.00669-09
Gellatly, 2013, Pseudomonas aeruginosa: new insights into pathogenesis and host defenses, Pathog Dis, 67, 159, 10.1111/2049-632X.12033
Ghafoor, 2011, Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture, Appl Environ Microbiol, 77, 5238, 10.1128/AEM.00637-11
Giacometti, 1999, In-vitro activity of cationic peptides alone and in combination with clinically used antimicrobial agents against Pseudomonas aeruginosa, J Antimicrob Chemother, 44, 641, 10.1093/jac/44.5.641
Gillis, 2005, Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms, Antimicrob Agents Chemother, 49, 3858, 10.1128/AAC.49.9.3858-3867.2005
Glessner, 1999, Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility, J Bacteriol, 181, 1623, 10.1128/JB.181.5.1623-1629.1999
Gokalsin, 2017, Reducing virulence and biofilm of Pseudomonas aeruginosa by potential Quorum Sensing Inhibitor Carotenoid: Zeaxanthin, Microb Ecol, 74, 466, 10.1007/s00248-017-0949-3
Goodman, 2004, A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa, Dev Cell, 7, 745, 10.1016/j.devcel.2004.08.020
Gordon, 2005, A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs, Curr Eye Res, 30, 505, 10.1080/02713680590968637
Grassi, 2017, Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents, Front Microbiol, 8, 1917, 10.3389/fmicb.2017.01917
Grassi, 2017, Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms, Front Microbiol, 8, 2409, 10.3389/fmicb.2017.02409
Greer, 2008, Doripenem (Doribax): the newest addition to the carbapenems, Proc (Bayl Univ Med Cent), 21, 337, 10.1080/08998280.2008.11928422
Grimwood, 2015, Vaccination against respiratory Pseudomonas aeruginosa infection, Hum Vaccin Immunother, 11, 14, 10.4161/hv.34296
Grishin, 2015, Pseudomonas Aeruginosa Lectins as targets for novel antibacterials, Acta Naturae, 7, 29, 10.32607/20758251-2015-7-2-29-41
Guenard, 2014, Multiple mutations lead to MexXY-OprM-dependent aminoglycoside resistance in clinical strains of Pseudomonas aeruginosa, Antimicrob Agents Chemother, 58, 221, 10.1128/AAC.01252-13
Gwinn, 2006, Nanoparticles: health effects–pros and cons, Environ Health Perspect, 114, 1818, 10.1289/ehp.8871
Ha, 2015, c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas Aeruginosa review, Microbiol Spectr, 3, 10.1128/microbiolspec.MB-0003-2014
Hachler, 1996, Sequence and characterization of a novel chromosomal aminoglycoside phosphotransferase gene, aph (3')-IIb, in Pseudomonas aeruginosa, Antimicrob Agents Chemother, 40, 1254, 10.1128/AAC.40.5.1254
Hagens, 2004, Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage, Antimicrob Agents Chemother, 48, 3817, 10.1128/AAC.48.10.3817-3822.2004
Hainrichson, 2007, Overexpression and initial characterization of the chromosomal aminoglycoside 3'-O-phosphotransferase APH(3')-IIb from Pseudomonas aeruginosa, Antimicrob Agents Chemother, 51, 774, 10.1128/AAC.01034-06
Hall, 1995, Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination, Mol Microbiol, 15, 593, 10.1111/j.1365-2958.1995.tb02368.x
Hancock, 2002, Function of pseudomonas porins in uptake and efflux, Annu Rev Microbiol, 56, 17, 10.1146/annurev.micro.56.012302.160310
Hancock, 2016, The immunology of host defence peptides: beyond antimicrobial activity, Nat Rev Immunol, 16, 321, 10.1038/nri.2016.29
Hancock, 2000, Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment, Drug Resist Updat, 3, 247, 10.1054/drup.2000.0152
Hartl, 2012, Innate immunity in cystic fibrosis lung disease, J Cyst Fibros, 11, 363, 10.1016/j.jcf.2012.07.003
Harvey, 2018, Pseudomonas aeruginosa defends against phages through type IV pilus glycosylation, Nat Microbiol, 3, 47, 10.1038/s41564-017-0061-y
Hengge, 2009, Principles of c-di-GMP signalling in bacteria, Nat Rev Microbiol, 7, 263, 10.1038/nrmicro2109
Henrichfreise, 2007, Resistance mechanisms of multiresistant Pseudomonas aeruginosa strains from Germany and correlation with hypermutation, Antimicrob Agents Chemother, 51, 4062, 10.1128/AAC.00148-07
Hentzer, 2002, Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound, Microbiology, 148, 87, 10.1099/00221287-148-1-87
Hilas, 2008, Doripenem (doribax), a new carbapenem antibacterial agent, P T, 33, 134
Hirsch, 2010, Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes, Expert Rev Pharmacoecon Outcomes Res, 10, 441, 10.1586/erp.10.49
Hirt, 2013, Antimicrobial peptide GL13K is effective in reducing biofilms of Pseudomonas aeruginosa, Antimicrob Agents Chemother, 57, 4903, 10.1128/AAC.00311-13
Hocquet, 2006, Involvement of the MexXY-OprM efflux system in emergence of cefepime resistance in clinical strains of Pseudomonas aeruginosa, Antimicrob Agents Chemother, 50, 1347, 10.1128/AAC.50.4.1347-1351.2006
Hocquet, 2003, MexXY-OprM efflux pump is necessary for a adaptive resistance of Pseudomonas aeruginosa to aminoglycosides, Antimicrob Agents Chemother, 47, 1371, 10.1128/AAC.47.4.1371-1375.2003
Hong, 2015, Epidemiology and characteristics of Metallo-beta-Lactamase-producing Pseudomonas aeruginosa, Infect Chemother, 47, 81, 10.3947/ic.2015.47.2.81
Hoyland-Kroghsbo, 2017, Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system, Proc Natl Acad Sci U S A, 114, 131, 10.1073/pnas.1617415113
Hurley, 2012, Novel approaches to the treatment of Pseudomonas aeruginosa infections in cystic fibrosis, Eur Respir J, 40, 1014, 10.1183/09031936.00042012
Imperi, 2014, Antivirulence activity of azithromycin in Pseudomonas aeruginosa, Front Microbiol, 5, 178, 10.3389/fmicb.2014.00178
Inoue, 2006, Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice, Environ Health Perspect, 114, 1325, 10.1289/ehp.8903
Ishida, 2007, Inhibition of quorum sensing in Pseudomonas aeruginosa by N-acyl cyclopentylamides, Appl Environ Microbiol, 73, 3183, 10.1128/AEM.02233-06
Istanbullu, 2012, Electrochemical biofilm control: mechanism of action, Biofouling, 28, 769, 10.1080/08927014.2012.707651
Jacoby, 1990, Appearance of amikacin and tobramycin resistance due to 4'-aminoglycoside nucleotidyltransferase [ANT(4')-II] in gram-negative pathogens, Antimicrob Agents Chemother, 34, 2381, 10.1128/AAC.34.12.2381
Jeevanandam, 2018, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations, Beilstein J Nanotechnol, 9, 1050, 10.3762/bjnano.9.98
Johansson, 2008, Inhibition and dispersion of Pseudomonas aeruginosa biofilms by glycopeptide dendrimers targeting the fucose-specific lectin LecB, Chem Biol, 15, 1249, 10.1016/j.chembiol.2008.10.009
Juan, 2005, Molecular mechanisms of beta-lactam resistance mediated by AmpC hyperproduction in Pseudomonas aeruginosa clinical strains, Antimicrob Agents Chemother, 49, 4733, 10.1128/AAC.49.11.4733-4738.2005
Jyot, 2007, Genetic mechanisms involved in the repression of flagellar assembly by Pseudomonas aeruginosa in human mucus, Mol Microbiol, 63, 1026, 10.1111/j.1365-2958.2006.05573.x
Kadam, 2011, A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms, Angew Chem Int Ed Engl, 50, 10631, 10.1002/anie.201104342
Kalia, 2013, Quorum sensing inhibitors: an overview, Biotechnol Adv, 31, 224, 10.1016/j.biotechadv.2012.10.004
Kaneko, 2007, The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity, J Clin Invest, 117, 877, 10.1172/JCI30783
Kang, 2017, PqsA promotes Pyoverdine production via biofilm formation, Pathogens, 7, 10.3390/pathogens7010003
Karaiskos, 2015, Plazomicin: an investigational therapy for the treatment of urinary tract infections, Expert Opin Investig Drugs, 24, 1501, 10.1517/13543784.2015.1095180
Kaspy, 2013, HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase, Nat Commun, 4, 3001, 10.1038/ncomms4001
Khajuria, 2013, Emergence of NDM – 1 in the clinical isolates of Pseudomonas aeruginosa in India, J Clin Diagn Res, 7, 1328
Khosravi, 2017, The frequency of class1 and 2 integrons in Pseudomonas aeruginosa strains isolated from burn patients in a burn center of Ahvaz, Iran, PLoS One, 12, 10.1371/journal.pone.0183061
de Kievit, 2000, Bacterial quorum sensing in pathogenic relationships, Infect Immun, 68, 4839, 10.1128/IAI.68.9.4839-4849.2000
Kim, 2010, Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli, Biochem Biophys Res Commun, 391, 209, 10.1016/j.bbrc.2009.11.033
Kitao, 2018, Molecular insights into function and competitive inhibition of Pseudomonas aeruginosa multiple virulence factor regulator, MBio, 9, 10.1128/mBio.02158-17
Klockgether, 2011, Pseudomonas aeruginosa Genomic Structure and Diversity, Front Microbiol, 2, 150, 10.3389/fmicb.2011.00150
Krachler, 2013, Targeting the bacteria-host interface: strategies in anti-adhesion therapy, Virulence, 4, 284, 10.4161/viru.24606
Kwon, 2017, Porous silicon nanoparticle delivery of Tandem peptide anti-infectives for the treatment of Pseudomonas aeruginosa lung infections, Adv Mater, 29, 10.1002/adma.201701527
Labrie, 2010, Bacteriophage resistance mechanisms, Nat Rev Microbiol, 8, 317, 10.1038/nrmicro2315
Lambert, 2002, Mechanisms of antibiotic resistance in Pseudomonas aeruginosa, J R Soc Med, 95, 22
Lamers, 2013, The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAbetaN) permeabilizes the outer membrane of gram-negative bacteria, PLoS One, 8, 10.1371/journal.pone.0060666
Lavoie, 2011, Innate immune responses to Pseudomonas aeruginosa infection, Microbes Infect, 13, 1133, 10.1016/j.micinf.2011.07.011
Lee, 2015, The hierarchy quorum sensing network in Pseudomonas aeruginosa, Protein Cell, 6, 26, 10.1007/s13238-014-0100-x
Lerrer, 2007, Honey and royal jelly, like human milk, abrogate lectin-dependent infection-preceding Pseudomonas aeruginosa adhesion, ISME J, 1, 149, 10.1038/ismej.2007.20
Lewis, 2010, Persister cells, Annu Rev Microbiol, 64, 357, 10.1146/annurev.micro.112408.134306
Li, 2012, Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies, Int J Med Microbiol, 302, 63, 10.1016/j.ijmm.2011.10.001
Li, 2009, Efflux-mediated drug resistance in bacteria: an update, Drugs, 69, 1555, 10.2165/11317030-000000000-00000
Lister, 2009, Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms, Clin Microbiol Rev, 22, 582, 10.1128/CMR.00040-09
Llanes, 2004, Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously, Antimicrob Agents Chemother, 48, 1797, 10.1128/AAC.48.5.1797-1802.2004
Llanes, 2011, Role of the MexEF-OprN efflux system in low-level resistance of Pseudomonas aeruginosa to ciprofloxacin, Antimicrob Agents Chemother, 55, 5676, 10.1128/AAC.00101-11
Lu, 2007, Dispersing biofilms with engineered enzymatic bacteriophage, Proc Natl Acad Sci U S A, 104, 11197, 10.1073/pnas.0704624104
Lu, 2009, Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy, Proc Natl Acad Sci U S A, 106, 4629, 10.1073/pnas.0800442106
Luyt, 2014, Imipenem, meropenem, or doripenem to treat patients with Pseudomonas aeruginosa ventilator-associated pneumonia, Antimicrob Agents Chemother, 58, 1372, 10.1128/AAC.02109-13
Ly-Chatain, 2014, The factors affecting effectiveness of treatment in phages therapy, Front Microbiol, 5, 51, 10.3389/fmicb.2014.00051
Lyczak, 2002, Lung infections associated with cystic fibrosis, Clin Microbiol Rev, 15, 194, 10.1128/CMR.15.2.194-222.2002
Ma, 2015, Iron and zinc exploitation during bacterial pathogenesis, Metallomics, 7, 1541, 10.1039/C5MT00170F
Macfarlane, 1999, PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance, Mol Microbiol, 34, 305, 10.1046/j.1365-2958.1999.01600.x
Mah, 2003, A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance, Nature, 426, 306, 10.1038/nature02122
Maisonneuve, 2014, Molecular mechanisms underlying bacterial persisters, Cell, 157, 539, 10.1016/j.cell.2014.02.050
Mandsberg, 2009, Antibiotic resistance in Pseudomonas aeruginosa strains with increased mutation frequency due to inactivation of the DNA oxidative repair system, Antimicrob Agents Chemother, 53, 2483, 10.1128/AAC.00428-08
Marraffini, 2010, CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea, Nat Rev Genet, 11, 181, 10.1038/nrg2749
Masuda, 2000, Substrate specificities of MexAB-OprM, MexCD-OprJ, and MexXY-oprM efflux pumps in Pseudomonas aeruginosa, Antimicrob Agents Chemother, 44, 3322, 10.1128/AAC.44.12.3322-3327.2000
Maura, 2017, Pharmacological inhibition of the Pseudomonas aeruginosa MvfR Quorum-sensing system interferes with biofilm formation and potentiates antibiotic-mediated biofilm disruption, Antimicrob Agents Chemother, 61
Merabishvili, 2009, Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials, PLoS One, 4, 10.1371/journal.pone.0004944
Miller, 2001, Quorum sensing in bacteria, Annu Rev Microbiol, 55, 165, 10.1146/annurev.micro.55.1.165
Miller, 2011, PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients, Antimicrob Agents Chemother, 55, 5761, 10.1128/AAC.05391-11
Miller, 2017, Inhaled nanoparticles accumulate at sites of vascular disease, ACS Nano, 11, 4542, 10.1021/acsnano.6b08551
Minandri, 2014, Promises and failures of gallium as an antibacterial agent, Future Microbiol, 9, 379, 10.2217/fmb.14.3
Mingeot-Leclercq, 1999, Aminoglycosides: activity and resistance, Antimicrob Agents Chemother, 43, 727, 10.1128/AAC.43.4.727
Mlynarcik, 2017, Starvation- and antibiotics-induced formation of persister cells in Pseudomonas aeruginosa, Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 161, 58, 10.5507/bp.2016.057
Moker, 2010, Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules, J Bacteriol, 192, 1946, 10.1128/JB.01231-09
Moreau-Marquis, 2009, Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells, Am J Respir Cell Mol Biol, 41, 305, 10.1165/rcmb.2008-0299OC
Morello, 2011, Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention, PLoS One, 6, 10.1371/journal.pone.0016963
Moskowitz, 2004, PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A, J Bacteriol, 186, 575, 10.1128/JB.186.2.575-579.2004
Moya, 2012, Pan-beta-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities, Antimicrob Agents Chemother, 56, 4771, 10.1128/AAC.00680-12
Mulcahy, 2010, Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis, J Bacteriol, 192, 6191, 10.1128/JB.01651-09
Munita, 2016, Mechanisms of antibiotic resistance, Microbiol Spectr, 4, 10.1128/microbiolspec.VMBF-0016-2015
Murphy, 2009, Pseudomonas aeruginosa in adults with chronic obstructive pulmonary disease, Curr Opin Pulm Med, 15, 138, 10.1097/MCP.0b013e328321861a
Nguyen, 2011, Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria, Science, 334, 982, 10.1126/science.1211037
Nikaido, 1991, Identification and characterization of porins in Pseudomonas aeruginosa, J Biol Chem, 266, 770, 10.1016/S0021-9258(17)35239-0
Nikokar, 2013, Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan, Iran, Iran J Microbiol, 5, 36
Nilsson, 2003, Lectins: proteins that interpret the sugar code, Anal Chem, 75, 10.1021/ac031373w
Ochs, 2000, Role of putative loops 2 and 3 in imipenem passage through the specific porin OprD of Pseudomonas aeruginosa, Antimicrob Agents Chemother, 44, 1983, 10.1128/AAC.44.7.1983-1985.2000
Odumosu, 2013, Analysis of integrons and associated gene cassettes in clinical isolates of multidrug resistant Pseudomonas aeruginosa from Southwest Nigeria, Ann Clin Microbiol Antimicrob, 12, 29, 10.1186/1476-0711-12-29
Ofek, 2003, Anti-adhesion therapy of bacterial diseases: prospects and problems, FEMS Immunol Med Microbiol, 38, 181, 10.1016/S0928-8244(03)00228-1
Okamoto, 2002, Extrusion of penem antibiotics by multicomponent efflux systems MexAB-OprM, MexCD-OprJ, and MexXY-OprM of Pseudomonas aeruginosa, Antimicrob Agents Chemother, 46, 2696, 10.1128/AAC.46.8.2696-2699.2002
O'May, 2009, Iron-binding compounds impair Pseudomonas aeruginosa biofilm formation, especially under anaerobic conditions, J Med Microbiol, 58, 765, 10.1099/jmm.0.004416-0
Ormala, 2013, Phage therapy: Should bacterial resistance to phages be a concern, even in the long run?, Bacteriophage, 3, 10.4161/bact.24219
O'Toole, 1998, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Mol Microbiol, 30, 295, 10.1046/j.1365-2958.1998.01062.x
Owusu-Anim, 2012, Differential role of two-component regulatory systems (phoPQ and pmrAB) in Polymyxin B susceptibility of Pseudomonas aeruginosa, Adv Microbiol, 2, 10.4236/aim.2012.21005
Paczkowski, 2017, Flavonoids suppress Pseudomonas aeruginosa virulence through Allosteric inhibition of Quorum-sensing receptors, J Biol Chem, 292, 4064, 10.1074/jbc.M116.770552
Pankuch, 2011, Activity of ACHN-490 tested alone and in combination with other agents against Pseudomonas aeruginosa, Antimicrob Agents Chemother, 55, 2463, 10.1128/AAC.01390-10
Papareddy, 2016, NLF20: an antimicrobial peptide with therapeutic potential against invasive Pseudomonas aeruginosa infection, J Antimicrob Chemother, 71, 170, 10.1093/jac/dkv322
Park, 2011, The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation, Int J Mol Sci, 12, 5971, 10.3390/ijms12095971
Park, 2012, Impact of adequate empirical combination therapy on mortality from bacteremic Pseudomonas aeruginosa pneumonia, BMC Infect Dis, 12, 308, 10.1186/1471-2334-12-308
Parkins, 2001, Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation, Mol Microbiol, 40, 1215, 10.1046/j.1365-2958.2001.02469.x
Paterson, 2005, Extended-spectrum beta-lactamases: a clinical update, Clin Microbiol Rev, 18, 657, 10.1128/CMR.18.4.657-686.2005
Paterson, 2009, Doripenem, Clin Infect Dis, 49, 291, 10.1086/600036
Pires, 2016, Genetically engineered phages: a review of advances over the last decade, Microbiol Mol Biol Rev, 80, 523, 10.1128/MMBR.00069-15
Pires, 2015, Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections, J Virol, 89, 7449, 10.1128/JVI.00385-15
Pletzer, 2016, Anti-biofilm peptides as a new weapon in antimicrobial warfare, Curr Opin Microbiol, 33, 35, 10.1016/j.mib.2016.05.016
Poirel, 2001, Characterization of Class 1 integrons from Pseudomonas aeruginosa that contain the bla(VIM-2) carbapenem-hydrolyzing beta-lactamase gene and of two novel aminoglycoside resistance gene cassettes, Antimicrob Agents Chemother, 45, 546, 10.1128/AAC.45.2.546-552.2001
Poole, 2004, Resistance to beta-lactam antibiotics, Cell Mol Life Sci, 61, 2200, 10.1007/s00018-004-4060-9
Poole, 2005, Aminoglycoside resistance in Pseudomonas aeruginosa, Antimicrob Agents Chemother, 49, 479, 10.1128/AAC.49.2.479-487.2005
Poole, 2011, Pseudomonas aeruginosa: resistance to the max, Front Microbiol, 2, 65, 10.3389/fmicb.2011.00065
Poole, 1996, Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa, Mol Microbiol, 21, 713, 10.1046/j.1365-2958.1996.281397.x
Poonsuk, 2014, Simultaneous overexpression of multidrug efflux pumps in Pseudomonas aeruginosa non-cystic fibrosis clinical isolates, Can J Microbiol, 60, 437, 10.1139/cjm-2014-0239
Priebe, 2014, Vaccines for Pseudomonas aeruginosa: a long and winding road, Expert Rev Vaccines, 13, 507, 10.1586/14760584.2014.890053
Pritt, 2007, Mucoid Pseudomonas in cystic fibrosis, Am J Clin Pathol, 128, 32, 10.1309/KJRPC7DD5TR9NTDM
Queenan, 2010, Hydrolysis and inhibition profiles of beta-lactamases from molecular classes A to D with doripenem, imipenem, and meropenem, Antimicrob Agents Chemother, 54, 565, 10.1128/AAC.01004-09
Ramirez, 2010, Aminoglycoside modifying enzymes, Drug Resist Updat, 13, 151, 10.1016/j.drup.2010.08.003
Rampioni, 2017, Effect of efflux pump inhibition on Pseudomonas aeruginosa transcriptome and virulence, Sci Rep, 7, 11392, 10.1038/s41598-017-11892-9
Rasamiravaka, 2015, The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms, Biomed Res Int, 2015, 759348, 10.1155/2015/759348
Rasmussen, 2006, Quorum sensing inhibitors: a bargain of effects, Microbiology, 152, 895, 10.1099/mic.0.28601-0
Ratjen, 2009, Aminoglycoside therapy against Pseudomonas aeruginosa in cystic fibrosis: a review, J Cyst Fibros, 8, 361, 10.1016/j.jcf.2009.08.004
Rawat, 2010, Extended-spectrum beta-lactamases in Gram negative bacteria, J Glob Infect Dis, 2, 263, 10.4103/0974-777X.68531
Reid, 2007, Increased airway iron as a potential factor in the persistence of Pseudomonas aeruginosa infection in cystic fibrosis, Eur Respir J, 30, 286, 10.1183/09031936.00154006
Reuter, 2016, Interfering with Bacterial Quorum sensing, Perspect Medicin Chem, 8, 1, 10.4137/PMC.S13209
Rhoads, 2009, Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial, J Wound Care, 18, 40
Riera, 2011, Pseudomonas aeruginosa carbapenem resistance mechanisms in Spain: impact on the activity of imipenem, meropenem and doripenem, J Antimicrob Chemother, 66, 2022, 10.1093/jac/dkr232
Rutherford, 2012, Bacterial quorum sensing: its role in virulence and possibilities for its control, Cold Spring Harb Perspect Med, 2, 10.1101/cshperspect.a012427
Sadikot, 2005, Pathogen-host interactions in Pseudomonas aeruginosa pneumonia, Am J Respir Crit Care Med, 171, 1209, 10.1164/rccm.200408-1044SO
Sadovskaya, 2010, High-level antibiotic resistance in Pseudomonas aeruginosa biofilm: the ndvB gene is involved in the production of highly glycerol-phosphorylated beta-(1->3)-glucans, which bind aminoglycosides, Glycobiology, 20, 895, 10.1093/glycob/cwq047
Saiman, 2003, Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial, JAMA, 290, 1749, 10.1001/jama.290.13.1749
Saito, 1999, nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexR gene of the Pseudomonas aeruginosa chromosome, FEMS Microbiol Lett, 179, 67, 10.1111/j.1574-6968.1999.tb08709.x
Salata, 2004, Applications of nanoparticles in biology and medicine, J Nanobiotechnology, 2, 3, 10.1186/1477-3155-2-3
Salomoni, 2017, Antibacterial effect of silver nanoparticles in Pseudomonas aeruginosa, Nanotechnol Sci Appl, 10, 115, 10.2147/NSA.S133415
Sandoval-Motta, 2016, Adaptive resistance to antibiotics in bacteria: a systems biology perspective, Wiley Interdiscip Rev Syst Biol Med, 8, 253, 10.1002/wsbm.1335
Shigemura, 2015, Association of overexpression of efflux pump genes with antibiotic resistance in Pseudomonas aeruginosa strains clinically isolated from urinary tract infection patients, J Antibiot (Tokyo), 68, 568, 10.1038/ja.2015.34
Silby, 2011, Pseudomonas genomes: diverse and adaptable, FEMS Microbiol Rev, 35, 652, 10.1111/j.1574-6976.2011.00269.x
Singhai, 2012, A study on device-related infections with special reference to biofilm production and antibiotic resistance, J Glob Infect Dis, 4, 193, 10.4103/0974-777X.103896
Srikumar, 2000, Influence of mutations in the mexR repressor gene on expression of the MexA-MexB-oprM multidrug efflux system of Pseudomonas aeruginosa, J Bacteriol, 182, 1410, 10.1128/JB.182.5.1410-1414.2000
Srinivas, 2010, Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa, Science, 327, 1010, 10.1126/science.1182749
Starkey, 2014, Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity, PLoS Pathog, 10, 10.1371/journal.ppat.1004321
Stern, 2011, The phage-host arms race: shaping the evolution of microbes, Bioessays, 33, 43, 10.1002/bies.201000071
Stewart, 2002, Mechanisms of antibiotic resistance in bacterial biofilms, Int J Med Microbiol, 292, 107, 10.1078/1438-4221-00196
Stewart, 2001, Antibiotic resistance of bacteria in biofilms, Lancet, 358, 135, 10.1016/S0140-6736(01)05321-1
Storz, 2012, Validation of PqsD as an anti-biofilm target in Pseudomonas aeruginosa by development of small-molecule inhibitors, J Am Chem Soc, 134, 16143, 10.1021/ja3072397
Stover, 2000, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature, 406, 959, 10.1038/35023079
Subedi, 2018, Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: an ocular perspective, Clin Exp Optom, 101, 162, 10.1111/cxo.12621
Sugawara, 2006, Pseudomonas aeruginosa porin OprF exists in two different conformations, J Biol Chem, 281, 16220, 10.1074/jbc.M600680200
Sulakvelidze, 2001, Bacteriophage therapy, Antimicrob Agents Chemother, 45, 649, 10.1128/AAC.45.3.649-659.2001
Sultana, 2015, Electrochemical scaffold generates localized, low concentration of hydrogen peroxide that inhibits bacterial pathogens and biofilms, Sci Rep, 5, 14908, 10.1038/srep14908
Sultana, 2016, Eradication of Pseudomonas aeruginosa biofilms and persister cells using an electrochemical scaffold and enhanced antibiotic susceptibility, NPJ Biofilms Microbiomes, 2, 2, 10.1038/s41522-016-0003-0
Sun, 2014, Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations, Biochem Biophys Res Commun, 453, 254, 10.1016/j.bbrc.2014.05.090
Susilowati, 2017, Royal jelly inhibits Pseudomonas aeruginosa adherence and reduces excessive inflammatory responses in human epithelial cells, Biomed Res Int, 2017, 3191752, 10.1155/2017/3191752
Tacconelli, 2017, Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics, World Health Organization, 1
Tateda, 2001, Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa, Antimicrob Agents Chemother, 45, 1930, 10.1128/AAC.45.6.1930-1933.2001
Taylor, 2014, Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies, J Biotechnol, 191, 121, 10.1016/j.jbiotec.2014.09.003
Tian, 2016, CpxR activates MexAB-OprM efflux pump expression and enhances antibiotic resistance in both laboratory and clinical nalB-type isolates of Pseudomonas aeruginosa, PLoS Pathog, 12, 10.1371/journal.ppat.1005932
Tielker, 2005, Pseudomonas aeruginosa lectin LecB is located in the outer membrane and is involved in biofilm formation, Microbiology, 151, 1313, 10.1099/mic.0.27701-0
Toke, 2005, Antimicrobial peptides: new candidates in the fight against bacterial infections, Biopolymers, 80, 717, 10.1002/bip.20286
Traczewski, 2006, In vitro activity of doripenem against Pseudomonas aeruginosa and Burkholderia cepacia isolates from both cystic fibrosis and non-cystic fibrosis patients, Antimicrob Agents Chemother, 50, 819, 10.1128/AAC.50.2.819-821.2006
Unterholzner, 2013, Toxin-antitoxin systems: biology, identification, and application, Mob Genet Elements, 3, 10.4161/mge.26219
Van den Bergh, 2017, Formation, physiology, ecology, evolution and clinical importance of bacterial persisters, FEMS Microbiol Rev, 41, 219, 10.1093/femsre/fux001
Vandenheuvel, 2015, Bacteriophage therapy: advances in formulation strategies and human clinical trials, Annu Rev Virol, 2, 599, 10.1146/annurev-virology-100114-054915
Ventola, 2015, The antibiotic resistance crisis: part 1: causes and threats, P T, 40, 277
Vieira, 2012, Phage therapy to control multidrug-resistant Pseudomonas aeruginosa skin infections: in vitro and ex vivo experiments, Eur J Clin Microbiol Infect Dis, 31, 3241, 10.1007/s10096-012-1691-x
Vincent, 2014, Vaccine development and passive immunization for Pseudomonas aeruginosa in critically ill patients: a clinical update, Future Microbiol, 9, 457, 10.2217/fmb.14.10
Walkty, 2014, In vitro activity of plazomicin against 5,015 gram-negative and gram-positive clinical isolates obtained from patients in canadian hospitals as part of the CANWARD study, 2011–2012, Antimicrob Agents Chemother, 58, 2554, 10.1128/AAC.02744-13
Walters, 2003, Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin, Antimicrob Agents Chemother, 47, 317, 10.1128/AAC.47.1.317-323.2003
Wang, 2017, The antimicrobial activity of nanoparticles: present situation and prospects for the future, Int J Nanomedicine, 12, 1227, 10.2147/IJN.S121956
Wang, 2011, Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response, Appl Environ Microbiol, 77, 5577, 10.1128/AEM.05068-11
Waters, 2017, Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa, Thorax, 72, 666, 10.1136/thoraxjnl-2016-209265
Welte, 1995, Structure and function of the porin channel, Kidney Int, 48, 930, 10.1038/ki.1995.374
Wen, 2014, Toxin-Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity, Pathog Dis, 70, 240, 10.1111/2049-632X.12145
Westwater, 2003, Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections, Antimicrob Agents Chemother, 47, 1301, 10.1128/AAC.47.4.1301-1307.2003
Wilton, 2016, Extracellular DNA Acidifies biofilms and induces Aminoglycoside resistance in Pseudomonas aeruginosa, Antimicrob Agents Chemother, 60, 544, 10.1128/AAC.01650-15
Wittebole, 2014, A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens, Virulence, 5, 226, 10.4161/viru.25991
Wnorowska, 2015, Bactericidal activities of cathelicidin LL-37 and select cationic lipids against the hypervirulent Pseudomonas aeruginosa strain LESB58, Antimicrob Agents Chemother, 59, 3808, 10.1128/AAC.00421-15
Wolter, 2004, Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance, FEMS Microbiol Lett, 236, 137, 10.1111/j.1574-6968.2004.tb09639.x
Wolter, 2013, Mechanisms of beta-lactam resistance among Pseudomonas aeruginosa, Curr Pharm Des, 19, 209, 10.2174/138161213804070311
Wood, 2013, Bacterial persister cell formation and dormancy, Appl Environ Microbiol, 79, 7116, 10.1128/AEM.02636-13
Wright, 2005, Bacterial resistance to antibiotics: enzymatic degradation and modification, Adv Drug Deliv Rev, 57, 1451, 10.1016/j.addr.2005.04.002
Wright, 2009, A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy, Clin Otolaryngol, 34, 349, 10.1111/j.1749-4486.2009.01973.x
Yan, 2006, Characterization of acquired beta-lactamases and their genetic support in multidrug-resistant Pseudomonas aeruginosa isolates in Taiwan: the prevalence of unusual integrons, J Antimicrob Chemother, 58, 530, 10.1093/jac/dkl266
Yang, 2017, Protective efficacy of the Trivalent Pseudomonas aeruginosa vaccine candidate PcrV-OprI-Hcp1 in Murine Pneumonia and burn models, Sci Rep, 7, 3957, 10.1038/s41598-017-04029-5
Yang, 2009, Pyoverdine and PQS mediated subpopulation interactions involved in Pseudomonas aeruginosa biofilm formation, Mol Microbiol, 74, 1380, 10.1111/j.1365-2958.2009.06934.x
Yildirimer, 2011, Toxicology and clinical potential of nanoparticles, Nano Today, 6, 585, 10.1016/j.nantod.2011.10.001
Zavascki, 2007, Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review, J Antimicrob Chemother, 60, 1206, 10.1093/jac/dkm357
Zhang, 2011, Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance, J Bacteriol, 193, 5510, 10.1128/JB.00268-11
Zhang, 2008, Involvement of a novel efflux system in biofilm-specific resistance to antibiotics, J Bacteriol, 190, 4447, 10.1128/JB.01655-07
Zheng, 2017, Synergistic efficacy of Aedes aegypti antimicrobial peptide Cecropin A2 and Tetracycline against Pseudomonas aeruginosa, Antimicrob Agents Chemother, 61, 10.1128/AAC.00686-17
Zhou, 2013, Synergistic effect of clinically used antibiotics and peptide antibiotics against Gram-positive and Gram-negative bacteria, Exp Ther Med, 6, 1000, 10.3892/etm.2013.1231
Zhu, 2015, Bactericidal efficiency and modes of action of the novel antimicrobial peptide T9W against Pseudomonas aeruginosa, Antimicrob Agents Chemother, 59, 3008, 10.1128/AAC.04830-14