Microbial production of sabinene—a new terpene-based precursor of advanced biofuel

Microbial Cell Factories - Tập 13 - Trang 1-10 - 2014
Haibo Zhang1, Qiang Liu2, Yujin Cao1, Xinjun Feng1, Yanning Zheng1, Huibin Zou1, Hui Liu1, Jianming Yang1, Mo Xian1
1CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Laoshan District, China
2College of Food Science, Sichuan Agricultural University, Yaan, China

Tóm tắt

Sabinene, one kind of monoterpene, accumulated limitedly in natural organisms, is being explored as a potential component for the next generation of aircraft fuels. And demand for advanced fuels impels us to develop biosynthetic routes for the production of sabinene from renewable sugar. In this study, sabinene was significantly produced by assembling a biosynthetic pathway using the methylerythritol 4-phosphate (MEP) or heterologous mevalonate (MVA) pathway combining the GPP and sabinene synthase genes in an engineered Escherichia coli strain. Subsequently, the culture medium and process conditions were optimized to enhance sabinene production with a maximum titer of 82.18 mg/L. Finally, the fed-batch fermentation of sabinene was evaluated using the optimized culture medium and process conditions, which reached a maximum concentration of 2.65 g/L with an average productivity of 0.018 g h-1 g-1 dry cells, and the conversion efficiency of glycerol to sabinene (gram to gram) reached 3.49%. This is the first report of microbial synthesis of sabinene using an engineered E. coli strain with the renewable carbon source as feedstock. Therefore, a green and sustainable production strategy has been established for sabinene.

Tài liệu tham khảo

Peralta-Yahya PP, Keasling JD: Advanced biofuel production in microbes. Biotech J. 2010, 5: 147-162. 10.1002/biot.200900220. 10.1002/biot.200900220.

Jiang X, Zhang H, Yang J, Liu M, Feng H, Liu X, Cao Y, Feng D, Xian M: Induction of gene expression in bacteria at optimal growth temperatures. Appl Microbiol Biotechnol. 2013, 97 (12): 5423-5431. 10.1007/s00253-012-4633-8.

Brown HC, Ramachandran PV: Asymmetric reduction with chiral organoboranes based on. alpha.-pinene. Accounts Chem Res. 1992, 25: 16-24. 10.1021/ar00013a003. 10.1021/ar00013a003.

Kirby J, Keasling JD: Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol. 2009, 60: 335-355. 10.1146/annurev.arplant.043008.091955.

Ryder JA: Patent US 7, 935, 156 B2 - Jet fuel compositions and methods of making and using same. 2011

Rude MA, Schirmer A: New microbial fuels: a biotech perspective. Curr Opin Microbiol. 2009, 12: 274-281. 10.1016/j.mib.2009.04.004.

Reiling KK, Yoshikuni Y, Martin VJJ, Newman J, Bohlmann J, Keasling JD: Mono and diterpene production in Escherichia coli. Biotechnol Bioeng. 2004, 87: 200-212. 10.1002/bit.20128.

Bokinsky G, Peralta-Yahya PP, George A, Holmes BM, Steen EJ, Dietrich J, Lee TS, Tullman-Ercek D, Voigt CA, Simmons BA, Keasling JD: Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli. Proc Natl Acad Sci U S A. 2011, 108: 19949-19954. 10.1073/pnas.1106958108.

Chang MCY, Keasling JD: Production of isoprenoid pharmaceuticals by engineered microbes. Nat Chem Biol. 2006, 2: 674-681. 10.1038/nchembio836.

Schmidt-Dannert C, Umeno D, Arnold FH: Molecular breeding of carotenoid biosynthetic pathways. Nat Biotechnol. 2000, 18: 750-753. 10.1038/77319.

Leonard E, Lim K-H, Saw P-N, Koffas MAG: Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl Environ Microbiol. 2007, 73: 3877-3886. 10.1128/AEM.00200-07.

Yan YC, Liao J: Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol. 2009, 36: 471-479. 10.1007/s10295-009-0532-0.

Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD: Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003, 21: 796-802. 10.1038/nbt833.

Alexeeva YV, Ivanova EP, Bakunina IY, Zvaygintseva TN, Mikhailov VV: Optimization of glycosidases production by Pseudoalteromonas issachenkonii KMM 3549T. Lett Appl Microbiol. 2002, 35: 343-346. 10.1046/j.1472-765X.2002.01189.x.

Hunke S, Betton J-M: Temperature effect on inclusion body formation and stress response in the periplasm of Escherichia coli. Mol Microbiol. 2003, 50: 1579-1589. 10.1046/j.1365-2958.2003.03785.x.

Wang D, Li Q, Song Z, Zhou W, Su Z, Xing J: High cell density fermentation via a metabolically engineered Escherichia coli for the enhanced production of succinic acid. J Chem Technol Biotechnol. 2011, 86: 512-518. 10.1002/jctb.2543. 10.1002/jctb.2543.

Chen N, Huang J, Feng Z, Yu L, Xu Q, Wen T: Optimization of fermentation conditions for the biosynthesis of L-Threonine by Escherichia coli. Appl Biochem Biotechnol. 2009, 158: 595-604. 10.1007/s12010-008-8385-y.