Production of rubber-like polymers by microorganisms

Current Opinion in Microbiology - Tập 6 - Trang 261-270 - 2003
Alexander Steinbüchel1
1Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149 Münster, Germany

Tài liệu tham khảo

Cowie JMG: Polymers: Chemistry & Physics of Modern Materials. edn 2. London: Blackie, 1991. Elias H-G: An Introduction to Polymer Science, edn 1. Weinheim: VCH Verlagsgesellschaft; 1997. Mooibroek, 2000, Alternative sources of natural rubber, Appl. Microbiol. Biotechnol., 53, 355, 10.1007/s002530051627 Tanaka Y, Sakdapipanich JT: Chemical structure and occurrence of natural polyisoprenes. In Biopolymers – Biology, Chemistry, Biotechnology, Applications, vol 2 (Polyisoprenoids), edn 1. Edited by Koyama T, Steinbüchel A. Weinheim: Wiley-VCH; 2001:1-25. Wood, 2000, Microstructure of purified rubber particles, Int. J. Plant Sci., 161, 435, 10.1086/314269 Castillon, 2000, A simplified protocol for micropropagation of guayule (Parthenium argentatum, Gray), In Vitro Cell Dev. Biol. Plant, 36, 215, 10.1007/s11627-000-0040-4 Castillon, 2000, Regulation of initiation and polymer molecular weight of cis-1,4-polyisoprene synthesized in vitro by particles isolated from P. argentatum (Gray), Phytochemistry, 51, 43, 10.1016/S0031-9422(98)00719-5 Gudin, 1984, Direct bioconversion of solar energy into organic chemicals, World Biotech. Rep., 1, 541 Stewart, 1955, Synthesis of rubber by fungi, Science, 122, 1271, 10.1126/science.122.3183.1271 Steinbüchel, 2001, Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example, Macromol. Biosci., 1, 1, 10.1002/1616-5195(200101)1:1<1::AID-MABI1>3.0.CO;2-B De Koning GJM: Prospects of bacterial poly[(R)-3-hydroxyalkanoates]. PhD thesis, Technische Universiteit Eindhoven, 1993. Asrar J, Gruys K: Biodegradable Polymer (Biopol®). In Biopolymers – Biology, Chemistry, Biotechnology, Applications, vol 4 (Polyesters III), edn 1. Edited by Doi Y, Steinbüchel A. Weinheim: Wiley-VCH; 2002:53-90. De Smet, 1983, Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane, J. Bacteriol., 154, 870, 10.1128/JB.154.2.870-878.1983 Westhues RA, Kessler B, Dielissen MPM, Witholt B, Eggink G: Fermentative production of medium-chain-length poly(3-hydroxyalkanoate). In Biopolymers – Biology, Chemistry, Biotechnology, Applications, vol 3A (Polyesters I), edn 1. Edited by Doi Y, Steinbüchel A. Weinheim: Wiley-VCH; 2001:291-316. Taguchi K, Taguchi S, Sudesh K, Maehara A, Tsuge T, Doi Y: Metabolic pathways and engineering of PHA biosynthesis. In Biopolymers – Biology, Chemistry, Biotechnology, Applications, vol 3A (Polyesters I), edn 1. Edited by Doi Y, Steinbüchel A. Weinheim: Wiley-VCH; 2001:217-247. Marchessault RH, Yu G: Crystallization and material properties of polyhydroxyalkanoates. In Biopolymers – Biology, Chemistry, Biotechnology, Applications, vol 3B (Polyesters II), edn 1. Edited by Doi Y, Steinbüchel A. Weinheim: Wiley-VCH; 2002:157-202. De Koning, 1994, A biodegradable rubber by crosslinking poly(hydroxyalkanoate) from Pseudomonas oleovorans, Polymer, 35, 2090, 10.1016/0032-3861(94)90233-X Ashby, 1998, Radiation crosslinking of a bacterial medium-chain-length poly(hydroxyalkanoate) elastomer from tallow, Int. J. Biol. Macromol., 23, 61, 10.1016/S0141-8130(98)00034-8 Ashby, 2000, Viscoelastic properties of linseed oil-based medium chain length poly(hydroxyalkanoate) films: effects of epoxidation and curing, Int. J. Biol. Macromol., 27, 355, 10.1016/S0141-8130(00)00140-9 Hazer, 2001, Free radical crosslinking of unsaturated bacterial polyesters obtained from soybean oily acids, Polym. Bulletin, 46, 389, 10.1007/s002890170047 Maroios, 1999, Effect of sterilization on the physical and structural characteristics of polyhydroxyoctanoate (PHO), J. Biomaterial. Sci. – Polym. Edition, 10, 469, 10.1163/156856299X00216 Gagnon, 1994, Chemical modification of bacterial elastomers. 2. Sulfur vulcanization, Polymer, 35, 4368, 10.1016/0032-3861(94)90094-9 Kim, 1997, Poly(3-hydroxyalkanoate)s produced by Pseudomonas oleovorans grown by feeding nonanoic and 10-undecenoic acids in sequence, Polym. J., 29, 894, 10.1295/polymj.29.894 Dufresne, 2001, Gamma-ray crosslinking of poly(3-hydroxyoctanoate-co-undecenoate), Int. J. Biol. Macromol., 29, 73, 10.1016/S0141-8130(01)00152-0 Valentin, 1999, Biosynthesis and characterization of poly(3-hydroxy-4-pentenoic acid), Macromolecules, 32, 7389, 10.1021/ma9905167 Lee, 1999, Crosslinking of microbial copolyesters with pendant epoxide groups by diamine, Polymer, 40, 3787, 10.1016/S0032-3861(98)00612-0 Scherer, 1994, Characterization and enzymatic degradation of a cross-linked bacterial polyester, J. Environ. Polym. Degrad., 2, 263, 10.1007/BF02071974 Arkin, 2002, Chemical modification of chlorinated microbial polyesters, Biomacromolecules, 3, 1327, 10.1021/bm020079v De Koning, 1996, A biodegradable rubber from bacteria, poly(hydroxyalkanoate) from pseudomonads, Mat. Sci. Eng. C, 4, 121, 10.1016/0928-4931(96)00136-1 Lütke-Eversloh, 2001, Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages, Microbiology, 147, 11, 10.1099/00221287-147-1-11 Lütke-Eversloh, 2002, Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli, Nature Materials, 1, 236, 10.1038/nmat773 Amann, 1995, Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiol. Rev., 59, 143, 10.1128/MMBR.59.1.143-169.1995 Lorenz, 2002, Metagenome — a challenging source of enzyme discovery, J. Mol. Catal. B – Enzymatic, 19, 13, 10.1016/S1381-1177(02)00147-9 Rohmer M, Seemann M, Grosdemange-Billiard C: Biosynthetic routes to the building blocks of isoprenoids. In Biopolymers – Biology, Chemistry, Biotechnology, Applications, vol 2 (Polyisoprenoids), edn 1. Edited by Koyama T, Steinbüchel A. Weinheim: Wiley-VCH; 2001:49-72. Lichtenthaler, 1999, The 1-deoxy-d-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants, Annu. Rev. Plant Physiol. Plant Molec. Biol., 50, 47, 10.1146/annurev.arplant.50.1.47 Kuzuyama, 1998, Fosmidomycin, a specific inhibitor of 1-deoxy-d-xylulose 5-phosphate reductoisomerase in the nonmevalonate pathway for terpenoid biosynthesis, Tetrahedron Lett., 39, 7913, 10.1016/S0040-4039(98)01755-9 Jomaa, 1999, Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs, Science, 285, 1573, 10.1126/science.285.5433.1573 Altincicek, 2000, Tools for discovery of inhibitors of the 1-deoxy-d-xylulose 5-phosphate (DXP) synthase and DXP reductoisomerase: an approach with enzymes from the pathogenic bacterium Pseudomonas aeruginosa, FEMS Microbiol. Lett., 190, 329 Querol, 2002, Enzymatic synthesis of 1-deoxysugar-phosphates using E. coli 1-deoxy-d-xylulose 5-phosphate synthase, Tetrahedron Lett., 43, 8265, 10.1016/S0040-4039(02)02018-X Hoeffler, 2002, Isoprenoid biosynthesis via the methylerythritol phosphate pathway — mechanistic investigations of the 1-deoxy-d-xylulose 5-phosphate reductoisomerase, Eur. J. Biochem., 269, 4446, 10.1046/j.1432-1033.2002.03150.x Richard, 2001, Structure of 4-diphosphocytidyl-2-C-methylerythritol synthetase involved in mevalonate-independent isoprenoid biosynthesis, Nat. Struct. Biol., 8, 641, 10.1038/89691 Kuzuyama, 2000, Studies on the nonmevalonate pathway: conversion of 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol to its 2-phospho derivative by 4-(cytidine 5′-diphospho)-2-C-methyl-d-erythritol kinase, Tetrahedron Lett., 41, 2925, 10.1016/S0040-4039(00)00295-1 Rohdich, 2000, Biosynthesis of terpenoids: 4-disphosphocytidyl-2-C-methyl-d-erithritol kinase from tomato, Proc. Natl. Acad. Sci. U.S.A., 97, 8251, 10.1073/pnas.140209197 Herz, 2000, Biosynthesis of terpenoids: YgbB protein converts 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate to 2C-methyl-d-erythritol 2,4-cyclodiphosphate, Proc. Natl. Acad. Sci. U.S.A., 97, 2486, 10.1073/pnas.040554697 Seemann, 2002, Isopreniod biosynthesis in Escherichia coli via the methylerythritol phosphate pathway: accumulation of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate in a gcpE deficient mutant of Escherichia coli, Tetrahedron Lett., 43, 775, 10.1016/S0040-4039(01)02269-9 Seemann, 2002, Isoprenoid biosynthesis in Escherichia coli via the methylerythritol phosphate pathway: enzymatic conversion of methylerythritol cyclodiphosphate into a phosphorylated derivative of (E)-2-methylbut-2-ene-1,4-diol, Tetrahedron Lett., 43, 1413, 10.1016/S0040-4039(02)00003-5 Seemann, 2002, Isoprenoid biosynthesis through the methylerythritol phosphate pathway: The (E)-4-hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE) is a [4Fe–4S] protein, Angew Chemie Int. Ed., 41, 4337, 10.1002/1521-3773(20021115)41:22<4337::AID-ANIE4337>3.0.CO;2-K Rodriguez-Concepcion, 2000, Genetic evidence of branching in the isoprenoid pathway for the production of isopentenyl diphosphate and dimethylallyl diphosphate in Escherichia coli, FEBS Lett., 473, 328, 10.1016/S0014-5793(00)01552-0 Hoeffler, 2002, Isoprenoid biosynthesis in higher plants and in Escherichia coli: on the branching in the methylerythritol phosphate pathway and the independent biosynthesis of isopentenyl diphosphate and dimethylallyl diphosphate, Biochem. J., 366, 573, 10.1042/bj20020337 Adam, 2002, Biosynthesis of terpenes: studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase, Proc. Natl. Acad. Sci. U.S.A., 99, 12108, 10.1073/pnas.182412599 Alticicek, 2002, LytB protein catalyses the terminal step of the 2-C-methyl-d-erythritol-4-phosphate pathway of isoprenoid biosynthesis, FEBS Lett., 532, 437, 10.1016/S0014-5793(02)03726-2 Rohdich, 2003, The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalysed by IspG and IspH protein, Proc. Natl. Acad. Sci. U.S.A., 100, 1586, 10.1073/pnas.0337742100 Liang, 2002, Structure, mechanism and function of prenyltransferases, Eur. J. Biochem., 269, 3339, 10.1046/j.1432-1033.2002.03014.x Kharel, 2003, Molecular analysis of cis-prenyl chain elongating enzymes, Nat. Prod. Rep., 30, 111, 10.1039/b108934j Ohya N, Koyama T: Biosynthesis of natural rubber and other natural polyisoprenoides. In Biopolymers — Biology, Chemistry, Biotechnology, Applications, vol 2 (Polyisoprenoids), edn 1. Edited by Koyama T, Steinbüchel A. Weinheim: Wiley-VCH; 2001:73-109. Cornish, 2001, Similarities and differences in rubber biochemistry among plant species, Phytochemistry, 57, 1123, 10.1016/S0031-9422(01)00097-8 Oh, 2000, Molecular cloning, expression and functional analysis of a cis-prenyltransferase from Arabidopsis thaliana, J. Biol. Chem., 275, 18482, 10.1074/jbc.M002000200 Cornish, 2000, Rubber molecular weight regulation, in vitro, in plant species that produce high and low molecular weights in vivo, Biomacromolecules, 1, 633, 10.1021/bm000034z Oh, 1999, Isolation, characterisation and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis, J. Biol. Chem., 274, 17132, 10.1074/jbc.274.24.17132 Müh, 1999, PHA synthase from Chromatium vinosum: cysteine 149 is involved in covalent catalysis, Biochemistry, 38, 826, 10.1021/bi9818319 Oppermann-Sanio, 2001, Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production, Naturwissenschaften, 89, 11, 10.1007/s00114-001-0280-0 Berg, 2000, Biosynthesis of the cyanobacterial reserve polymer multi-l-arginyl-poly-l-aspartic acid (cyanophycin) – mechanism of the cyanophycin synthetase reaction studied with synthetic primers, Eur. J. Biochem., 267, 5561, 10.1046/j.1432-1327.2000.01622.x Merkulov, 2000, Cloning and characterization of the Yarrowia lipolytica squalene synthase (SQS1) gene and functional complementation of the Saccharomyces cerevisiae erg9 mutation, Yeast, 16, 197, 10.1002/(SICI)1097-0061(200002)16:3<197::AID-YEA513>3.0.CO;2-L Steinbüchel, 2003, Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms, Biochem. Eng., 3734, 1 Zhang YW, Koyama T: Biosynthetic routes diverting from intermediates of isoprenoid biosynthesis to related products of the metabolism. In Biopolymers – Biology, Chemistry, Biotechnology, Applications, vol 2 (Polyisoprenoids), edn 1. Edited by Koyama T, Steinbüchel A. Weinheim: Wiley-VCH; 2001:111-142. Steinbüchel, 1995, Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions, Can. J. Microbiol., 41, 94, 10.1139/m95-175 Alvarez, 2002, Triacylglycerols in prokaryotic microorganisms, Appl. Microbiol. Biotechnol., 60, 367, 10.1007/s00253-002-1135-0 Wieczorek, 1995, Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus, J. Bacteriol., 177, 2425, 10.1128/jb.177.9.2425-2435.1995 Huang, 1992, Oil bodies and oleosins in seeds, Annu Rev. Plant Physiol. Plant Biochem., 43, 177, 10.1146/annurev.pp.43.060192.001141 Kim, 2002, A novel group of oleosins is present inside the pollen of Arabidopsis, J. Biol. Chem., 277, 22677, 10.1074/jbc.M109298200 Pötter, 2002, Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16, Microbiology, 148, 2413, 10.1099/00221287-148-8-2413 Linos A, Steinbüchel A: Biodegradation of natural and synthetic rubbers. In Biopolymers – Biology, Chemistry, Biotechnology, Applications, vol 2 (Polyisoprenoids), edn 1. Edited by Koyama T, Steinbüchel A. Weinheim: Wiley-VCH; 2001:321-359.