The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] Rose, A.H. (1993) Composition of the envelope layers of Saccharomyces cerevisiae in relation to flocculation and ethanol tolerance 2nd edn., 74, In J. Appl. Bacteriol. Symp. Suppl., pp 110Sâ118S.
Uden, 1984, Effects of ethanol on the temperature relations of viability and growth in yeast, Crit. Rev. Biotechnol., 1, 263, 10.3109/07388558309077982
Mishra, 1993, Stress Tolerance of Fungi, 189
Lloyd, 1993, Effects of growth with ethanol on fermentation and membrane fluidity of Saccharomyces cerevisiae, Yeast, 9, 825, 10.1002/yea.320090803
Casey, 1986, Ethanol tolerance in yeasts, CRC Crit. Rev. Microbiol., 13, 219, 10.3109/10408418609108739
Jones, 1989, Biological principles for the effects of ethanol, Enz. Microbiol. Technol., 11, 130, 10.1016/0141-0229(89)90073-2
Parsell, 1993, The function of heat shock proteins in stress tolerance: degradation and reactivation of damaged proteins, Annu. Rev. Genet., 27, 437, 10.1146/annurev.ge.27.120193.002253
Piper, 1993, Molecular events associated with the acquisition of heat tolerance in the yeast Saccharomyces cerevisiae, FEMS Microbiol. Rev., 11, 1, 10.1111/j.1574-6976.1993.tb00005.x
Plesset, 1982, Induction of heat shock proteins and thermotolerance by ethanol in Saccharomyces cerevisiae, Biochem. Biophys. Res. Commun., 108, 1340, 10.1016/0006-291X(82)92147-7
Piper, 1994, Induction of major heat shock proteins of Saccharomyces cerevisiae, including plasma membrane Hsp30, by ethanol levels above a critical threshold, Microbiology, 140, 3031, 10.1099/13500872-140-11-3031
Schnell, 1992, The PAR1 (YAP1/SNQ3) gene of Saccharomyces cerevisiae, a c-jun homologue, is involved in oxygen metabolism, Curr. Genet., 21, 269, 10.1007/BF00351681
[13] Moradas-Ferreira, P. , Costa, V. , Piper, P. and Mager, W. (1995) The molecular defences against reactive oxygen species in yeast Mol. Microbiol., (in press).
Steels, 1994, Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically, Microbiology, 140, 569, 10.1099/00221287-140-3-569
Costa, 1993, Acquisition of ethanol tolerance in Saccharomyces cererisiae: The key role of the mitochondrial superoxide dismutase, Arch. Biochem. Biophys., 300, 608, 10.1006/abbi.1993.1084
Wieser, 1991, Heat shock factor-independent heat control of transcription of the CTT1 gene encoding the cytosolic catalase T of Saccharomyces cerevisiae, J. Biol. Chem., 266, 12406, 10.1016/S0021-9258(18)98912-X
Marchler, 1993, A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions, EMBO J., 12, 1997, 10.1002/j.1460-2075.1993.tb05849.x
Sorger, 1991, Heat shock factor and the heat shock response, Cell, 65, 363, 10.1016/0092-8674(91)90452-5
Kirk, 1991, The determinants of heat shock element-directed lacZ expression in Saccharomyces cerevisiae, Yeast, 7, 539, 10.1002/yea.320070602
Schuller, 1994, The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene, EMBO J., 13, 4382, 10.1002/j.1460-2075.1994.tb06758.x
Kirk, 1991, Methanol as a convenient inducer of heat shock element-directed heterologous gene expression in yeast, Biotech. Lett., 13, 465, 10.1007/BF01049201
Uden, 1984, Temperature profiles of yeasts, Adv. Microb. Physiol., 25, 195, 10.1016/S0065-2911(08)60293-3
Serrano, 1991, The Molecular Biology of the Yeast Saccharomyces. Genome Dynamics, Protein Synthesis, and Energetics, 523
Cartwright, 1987, Effect of ethanol on the activity of the plasma membrane ATPase in, and accumulation of glycine by, Saccharomyces cerevisiae, J. Gen. Microbiol., 133, 857
Coote, 1991, Induction of increased thermotolerance in Saccharomyces cerevisiae may be triggered by a mechanism involving intracellular pH, J. Gen. Microbiol., 137, 1701, 10.1099/00221287-137-7-1701
Neves, 1992, On the mechanism by which heat shock induces trehalose accumulation in Saccharomyces cerevisiae, Biochem. J., 288, 559, 10.1042/bj2880859
Aguilera, 1989, Synergistic effects of ethanol and temperature on yeast mitochondria, Curr. Microbiol., 18, 179, 10.1007/BF01569567
Curran, 1994, Alcohols lower the threshold temperature for maximal activation of a heat shock expression vector in the yeast Saccharomyces cerevisiae, Microbiology, 140, 2225, 10.1099/13500872-140-9-2225
Gropper, 1993, Inhibitors of proteases and other Stressors induce low molecular weight heat shock proteins in Saccharomyces cerevisiae, Exp. Mycol., 17, 46, 10.1006/emyc.1993.1004
Alexandre, 1993, Ethanol adaptation mechanisms in Saccharomyces cerevisiae, Biotechnol. Appl. Biochem., 20, 173, 10.1111/j.1470-8744.1994.tb00312.x
Coote, 1994, Activity of the plasma membrane H+-ATPase is a key physiological determinant of thermotolerance in Saccharomyces cerevisiae, Microbiology, 140, 1881, 10.1099/13500872-140-8-1881
Rosa, 1991, In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae, Appl. Environ. Microbiol., 57, 830, 10.1128/AEM.57.3.830-835.1991
Panaretou, 1992, The plasma membrane of yeast acquires a novel heat shock protein (Hsp30) and displays a decline in proton-pumping ATPase levels in response to both heat shock and the entry to stationary phase, Eur. J. Biochem., 206, 635, 10.1111/j.1432-1033.1992.tb16968.x
Mansure, 1994, Trehalose inhibits ethanol effects on intact cells and liposomes, Biochim. Biophys. Acta, 1191, 309, 10.1016/0005-2736(94)90181-3
Hottiger, 1993, The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro, Eur. J. Biochem., 219, 187, 10.1111/j.1432-1033.1994.tb19929.x
Cheng, 1994, Weak acid preservatives block the heat shock response and heat shock element-directed lacZ expression of low pH Saccharomyces cerevisiae cultures, an inhibition partially relieved by respiratory deficiency, Microbiology, 140, 1085, 10.1099/13500872-140-5-1085
Maeda, 1995, Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor, Science, 269, 554, 10.1126/science.7624781