Low temperature sintering, structure and electrical properties of BiFeO3-BaTiO3 based piezoelectric ceramics using CuO-B2O3 composite sintering aids

Junchen Yang1,2, Miaomiao Huang1,2, Fangfang Wang3, Kongjun Zhu1, Kang Yan1
1State Key Laboratory of Mechanics and Control for Aerospace Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China

Tài liệu tham khảo

Leontsev, 2009, Dielectric and piezoelectric properties in Mn-modified (1–x)BiFeO3-xBaTiO3 ceramics, J. Am. Ceram. Soc., 92, 2957, 10.1111/j.1551-2916.2009.03313.x

Cao, 1993, Theoretical model for the morphotropic phase boundary in lead zirconate-lead titanate solid solution, Phys. Rev. B, 47, 4825, 10.1103/PhysRevB.47.4825

Choi, 2009, Switchable ferroelectric diode and photovoltaic effect in BiFeO3, Science, 324, 63, 10.1126/science.1168636

Hsiang, 2008, Sintering behavior and dielectric properties of BaTiO3 ceramics with glass addition for internal capacitor of LTCC, J. Alloy. Compd., 459, 307, 10.1016/j.jallcom.2007.04.218

Guo, 2015, Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics, J. Mater. Chem. C, 3, 5811, 10.1039/C5TC00507H

Gao, 2018, Large electric-field-induced strain and enhanced piezoelectric constant in CuO-modified BiFeO3-BaTiO3 ceramics, J. Am. Ceram. Soc., 101, 3383, 10.1111/jace.15499

Yan, 2010, Microstructure and piezoelectric properties of (K0.5Na0.5)NbO3-BaTiO3 lead-free piezoelectric ceramics modified by B2O3-CuO, J. Am. Ceram. Soc., 93, 3823, 10.1111/j.1551-2916.2010.03932.x

Cho, 2007, Low temperature sintering of BaO-Sm2O3-4TiO2 ceramics, J. Eur. Ceram. Soc., 27, 1053, 10.1016/j.jeurceramsoc.2006.05.061

Zhou, 2014, Low temperature sintering of (Ba0.98Ca0.02) (Sn0.04Ti0.96)O3 ceramics using CuO-B2O3 as a sintering additive, Key Eng. Mater., 602–603, 813

Zhao, 2016, Effect of B2O3 on phase structure and electrical properties of CuO-modified (Ba, Ca)(Ti, Sn)O3 lead-free piezoceramics sintered at a low-temperature, Ceram. Int., 42, 7366, 10.1016/j.ceramint.2016.01.139

Craig, 1975, Structural studies of some body-centered cubic phases of mixed oxides involving Bi2O3: The structures of Bi25FeO40 and Bi38ZnO60, J. Solid State Chem., 15, 1, 10.1016/0022-4596(75)90264-9

Zhao, 2016, Piezoelectric and ferroelectric properties of (Ba, Ca)(Ti, Sn)O3 lead-free ceramics sintered with Li2O additives: Analysis of point defects and phase structures, Ceram. Int., 42, 1086, 10.1016/j.ceramint.2015.09.035

Guan, 2020, Effects of Li2CO3 and CuO as composite sintering aids on the structure, piezoelectric properties, and temperature stability of BiFeO3-BaTiO3 ceramics, J. Electron. Mater., 49, 6199, 10.1007/s11664-020-08365-7

Yang, 2013, Piezoelectric properties and temperature stabilities of Mn- and Cu-modified BiFeO3-BaTiO3 high temperature ceramics, J. Eur. Ceram. Soc., 33, 1177, 10.1016/j.jeurceramsoc.2012.11.019

Jin, 2014, Decoding the fingerprint of ferroelectric loops: Comprehension of the material properties and structures, J. Am. Ceram. Soc., 97, 1, 10.1111/jace.12773

Lv, 2017, Large strain and strain memory effect in bismuth ferrite lead-free ceramics, J. Mater. Chem. C, 5, 9528, 10.1039/C7TC03282J

Zheng, 2020, Perovskite BiFeO3–BaTiO3 ferroelectrics: Engineering properties by domain evolution and thermal depolarization modification, Adv. Electron. Mater., 6, 2000079, 10.1002/aelm.202000079

Li, 2022, Constructing relaxor/ferroelectric pseudocomposite to reveal the domain role in electrostrain of bismuth ferrite-barium titanate based ceramics, ACS Appl. Mater. Interfaces, 14, 18713, 10.1021/acsami.2c03817