Comparison of multi-valent manganese oxides (Mn4+, Mn3+, and Mn2+) doping in BiFeO3-BaTiO3 piezoelectric ceramics

Journal of the European Ceramic Society - Tập 39 - Trang 4697-4704 - 2019
Da Jeong Kim1, Myang Hwan Lee1, Tae Kwon Song1
1School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam, 51140, South Korea

Tài liệu tham khảo

Randall, 1998, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics, J. Am. Ceram. Soc., 81, 677, 10.1111/j.1151-2916.1998.tb02389.x Knudsen, 2003, Domain variance and superstructure across the antiferroelectric/ferroelectric phase boundary in Pb1-1.5xLax(Zr0.9Ti0.1)O3, J. Mater. Res., 18, 262, 10.1557/JMR.2003.0037 Peláiz-Barranco, 2007, Features of phase transitions in lanthanum-modified lead zirconate titanate ferroelectric ceramics, Solid State Commun., 144, 425, 10.1016/j.ssc.2007.09.030 Kamiya, 1992, Effects of manganese addition on piezoelectric properties of Pb(Zr0.5Ti0.5)O3, Jpn. J. Appl. Phys., 31, 3058, 10.1143/JJAP.31.3058 Yao, 2011, Effects of Mn doping on the structure and electrical properties of high-temperature BiScO3-PbTiO3-Pb(Zn1/3Nb2/3)O3 piezoelectric ceramics, Mater. Res. Bull., 46, 1257, 10.1016/j.materresbull.2011.03.034 Lee, 2007, Low-temperature sintering of MnO2-doped PZT-PZN piezoelectric ceramics, J. Electroceram., 18, 311, 10.1007/s10832-007-9174-7 Seo, 2013, Structural and piezoelectric properties of MnO2-added 0.95(Na0.5K0.5)NbO3-0.05SrTiO3 ceramics, Sens. Actuators A Phys., 200, 47, 10.1016/j.sna.2012.10.040 Wang, 2015, Characteristics of giant piezoelectricity around the rhombohedral-tetragonal phase boundary in (K,Na)NbO3-based ceramics with different additives, J. Mater. Chem. A, 3, 15951, 10.1039/C5TA03511B Hou, 2004, Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics, J. Am. Ceram. Soc., 87, 847, 10.1111/j.1551-2916.2004.00847.x Park, 2010, Effect of MnO2 on the piezoelectric properties of the 0.75Pb(Zr0.47Ti0.53)O3-0.25Pb(Zn1/3Nb2/3)O3 ceramics, J. Am. Ceram. Soc., 93, 2537, 10.1111/j.1551-2916.2010.03888.x Li, 2013, Effects of Nb, Mn doping on the structure, piezoelectric, and dielectric properties of 0.8Pb(Sn0.46Ti0.54)O3-0.2Pb(Mg1/3Nb2/3)O3 piezoelectric ceramics, J. Am. Ceram. Soc., 96, 3440, 10.1111/jace.12479 Wang, 2014, Mn doped hard type perovskite high-temperature BYPT-PZN ternary piezoelectric ceramics, Sens. Actuators A Phys., 216, 335, 10.1016/j.sna.2014.05.009 Yan, 2014, Effect of Mn doping on the piezoelectric properties of 0.82Pb(Zr1/2Ti1/2)O3-0.03Pb(Mn1/3Sb2/3)O3-0.15Pb(Zn1/3Nb2/3)O3 ferroelectric ceramics, Ceram. Int., 40, 5897, 10.1016/j.ceramint.2013.11.034 Li, 2015, Effect of MnO2 addition on relaxor behavior and electrical properties of PMNST ferroelectric ceramics, Ceram. Int., 41, 9647, 10.1016/j.ceramint.2015.04.030 Lee, 2015, High-performance lead-free piezoceramics with high curie temperatures, Adv. Mater., 27, 6976, 10.1002/adma.201502424 Qi, 2005, Greatly reduced leakage current and conduction mechanism in aliovalention-doped BiFeO3, Appl. Phys. Lett., 86, 10.1063/1.1862336 Hu, 2008, Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film, Appl. Phys. Lett., 92, 10.1063/1.2918130 Li, 2005, Microstructure and ferroelectric properties of MnO2-doped bismuth-layer (Ca,Sr)Bi4Ti4O15 ceramics, J. Appl. Phys., 98, 10.1063/1.2058174 Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A, 32, 751, 10.1107/S0567739476001551 Leontsev, 2009, Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics, J. Am. Ceram. Soc., 92, 2957, 10.1111/j.1551-2916.2009.03313.x Kim, 2015, Effects of sintering temperature on the electric properties of Mn-modified BiFeO3-BaTiO3 bulk ceramics, J. Korean Phys. Soc., 66, 1115, 10.3938/jkps.66.1115 Cen, 2013, Structural, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 high-temperature ceramics, J. Mater. Sci., 24, 3952 Wei, 2017, Temperature dependence of the dielectric and piezoelectric properties of xBiFeO3-(1-x)BaTiO3 ceramics near the morphotropic phase boundary, J. Mater. Sci., 52, 10726, 10.1007/s10853-017-1280-6 Li, 2017, High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics, J. Mater. Sci., 52, 229, 10.1007/s10853-016-0325-6 Rojac, 2010, Strong ferroelectric domain-wall pinning in BiFeO3 ceramics, J. Appl. Phys., 108, 10.1063/1.3490249 Rojac, 2014, BiFeO3 ceramics: processing electrical, and electromechanical properties, J. Am. Ceram. Soc., 97, 1993, 10.1111/jace.12982 Gao, 2007, Effects of thermal and electrical histories on hard piezoelectrics: A comparison of internal dipolar fields and external dc bias, J. Appl. Phys., 101, 10.1063/1.2560909 Morozov, 2015, In-situ structural investigations of ferroelasticity in soft and hard rhombohedral and tetragonal PZT, J. Appl. Phys., 118, 10.1063/1.4934615 Hagiwara, 2014, Effects of CuO addition on electrical properties of 0.6BiFeO3-0.4(Bi0.5K0.5)TiO3 lead-free piezoelectric ceramics, J. Am. Ceram. Soc., 98, 469, 10.1111/jace.13287 Tong, 2018, Enhanced piezoelectric response and high-temperature sensitivity by site-selected doping of BiFeO3-BaTiO3 ceramics, J. Eur. Ceram. Soc., 38, 1356, 10.1016/j.jeurceramsoc.2017.10.023 Zheng, 2016, Enhanced piezoelectricity in (1-x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region, Dalton Trans., 45, 11277, 10.1039/C6DT01805J Li, 2017, Reduced dielectric loss and enhanced piezoelectric properties of Mn modified 0.71BiFeO3-0.29BaTiO3 ceramics sintered under oxygen atmosphere, J. Mater. Sci., 28, 1370 Schedel-Niedrig, 1995, Phys. Rev. B, 52, 17449, 10.1103/PhysRevB.52.17449 Guo, 2015, Critical roles of Mn-ions in enhancing insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics, J. Mater. Chem. C, 3, 5811, 10.1039/C5TC00507H Guo, 2017, Strong piezoelectricity and multiferroicity in BiFeO3-BaTiO3-NdCoO3 lead-free piezoelectric ceramics with high Curie temperature for current sensing application, J. Mater. Sci. Mater. Electron., 28, 5531, 10.1007/s10854-016-6216-4 Chen, 2018, Enhanced insulation resistance and electrical properties of BiFe1-x(Zn0.5Ti0.5)xO3-BaTiO3 lead-free piezoceramics, Ceram. Int., 44, 8409, 10.1016/j.ceramint.2018.02.034 Cheng, 2019, Enhanced insulating and piezoelectric properties of BiFeO3-BaTiO3-Bi0.5Na0.5TiO3 ceramics with high Curie temperature, J. Am. Ceram. Soc., 10.1111/jace.16602 Huang, 2009, Effect of Mn doping on electric and magnetic properties of BiFeO3 thin films by chemical solution deposition, J. Appl. Phys., 106, 10.1063/1.3225559 Wang, 2011, Comparative study on aging effect in BiFeO3 thin films substituted at A- and B-sites, Appl. Phys. Lett., 99, 10.1063/1.3672212 Lee, 2012, Electrical properties of thin films deposited with MnO- and MnO2-modified BiFeO3 oxide targets, J. Korean Phys. Soc., 61, 1070, 10.3938/jkps.61.1070 Wang, 2017, Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics, J. Eur. Ceram. Soc., 37, 1857, 10.1016/j.jeurceramsoc.2016.10.027 Fujii, 2011, Structural, dielectric, and piezoelectric properties of Mn-Doped BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3 ceramics, Jpn. J. Appl. Phys., 50, 10.1143/JJAP.50.09ND07 Yang, 2013, Piezoelectric properties and temperature stabilities of Mn- and Cu-modified BiFeO3-BaTiO3 high temperature ceramics, J. Eur. Ceram. Soc., 33, 1177, 10.1016/j.jeurceramsoc.2012.11.019 Gao, 2018, Large electric-field-induced strain and enhanced piezoelectric constant in CuO modified BiFeO3-BaTiO3 ceramics, J. Am. Ceram. Soc., 101, 3383, 10.1111/jace.15499