Comparison of multi-valent manganese oxides (Mn4+, Mn3+, and Mn2+) doping in BiFeO3-BaTiO3 piezoelectric ceramics
Tài liệu tham khảo
Randall, 1998, Intrinsic and extrinsic size effects in fine-grained morphotropic-phase-boundary lead zirconate titanate ceramics, J. Am. Ceram. Soc., 81, 677, 10.1111/j.1151-2916.1998.tb02389.x
Knudsen, 2003, Domain variance and superstructure across the antiferroelectric/ferroelectric phase boundary in Pb1-1.5xLax(Zr0.9Ti0.1)O3, J. Mater. Res., 18, 262, 10.1557/JMR.2003.0037
Peláiz-Barranco, 2007, Features of phase transitions in lanthanum-modified lead zirconate titanate ferroelectric ceramics, Solid State Commun., 144, 425, 10.1016/j.ssc.2007.09.030
Kamiya, 1992, Effects of manganese addition on piezoelectric properties of Pb(Zr0.5Ti0.5)O3, Jpn. J. Appl. Phys., 31, 3058, 10.1143/JJAP.31.3058
Yao, 2011, Effects of Mn doping on the structure and electrical properties of high-temperature BiScO3-PbTiO3-Pb(Zn1/3Nb2/3)O3 piezoelectric ceramics, Mater. Res. Bull., 46, 1257, 10.1016/j.materresbull.2011.03.034
Lee, 2007, Low-temperature sintering of MnO2-doped PZT-PZN piezoelectric ceramics, J. Electroceram., 18, 311, 10.1007/s10832-007-9174-7
Seo, 2013, Structural and piezoelectric properties of MnO2-added 0.95(Na0.5K0.5)NbO3-0.05SrTiO3 ceramics, Sens. Actuators A Phys., 200, 47, 10.1016/j.sna.2012.10.040
Wang, 2015, Characteristics of giant piezoelectricity around the rhombohedral-tetragonal phase boundary in (K,Na)NbO3-based ceramics with different additives, J. Mater. Chem. A, 3, 15951, 10.1039/C5TA03511B
Hou, 2004, Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics, J. Am. Ceram. Soc., 87, 847, 10.1111/j.1551-2916.2004.00847.x
Park, 2010, Effect of MnO2 on the piezoelectric properties of the 0.75Pb(Zr0.47Ti0.53)O3-0.25Pb(Zn1/3Nb2/3)O3 ceramics, J. Am. Ceram. Soc., 93, 2537, 10.1111/j.1551-2916.2010.03888.x
Li, 2013, Effects of Nb, Mn doping on the structure, piezoelectric, and dielectric properties of 0.8Pb(Sn0.46Ti0.54)O3-0.2Pb(Mg1/3Nb2/3)O3 piezoelectric ceramics, J. Am. Ceram. Soc., 96, 3440, 10.1111/jace.12479
Wang, 2014, Mn doped hard type perovskite high-temperature BYPT-PZN ternary piezoelectric ceramics, Sens. Actuators A Phys., 216, 335, 10.1016/j.sna.2014.05.009
Yan, 2014, Effect of Mn doping on the piezoelectric properties of 0.82Pb(Zr1/2Ti1/2)O3-0.03Pb(Mn1/3Sb2/3)O3-0.15Pb(Zn1/3Nb2/3)O3 ferroelectric ceramics, Ceram. Int., 40, 5897, 10.1016/j.ceramint.2013.11.034
Li, 2015, Effect of MnO2 addition on relaxor behavior and electrical properties of PMNST ferroelectric ceramics, Ceram. Int., 41, 9647, 10.1016/j.ceramint.2015.04.030
Lee, 2015, High-performance lead-free piezoceramics with high curie temperatures, Adv. Mater., 27, 6976, 10.1002/adma.201502424
Qi, 2005, Greatly reduced leakage current and conduction mechanism in aliovalention-doped BiFeO3, Appl. Phys. Lett., 86, 10.1063/1.1862336
Hu, 2008, Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO3 thin film, Appl. Phys. Lett., 92, 10.1063/1.2918130
Li, 2005, Microstructure and ferroelectric properties of MnO2-doped bismuth-layer (Ca,Sr)Bi4Ti4O15 ceramics, J. Appl. Phys., 98, 10.1063/1.2058174
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Cryst. A, 32, 751, 10.1107/S0567739476001551
Leontsev, 2009, Dielectric and piezoelectric properties in Mn-modified (1-x)BiFeO3-xBaTiO3 ceramics, J. Am. Ceram. Soc., 92, 2957, 10.1111/j.1551-2916.2009.03313.x
Kim, 2015, Effects of sintering temperature on the electric properties of Mn-modified BiFeO3-BaTiO3 bulk ceramics, J. Korean Phys. Soc., 66, 1115, 10.3938/jkps.66.1115
Cen, 2013, Structural, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 high-temperature ceramics, J. Mater. Sci., 24, 3952
Wei, 2017, Temperature dependence of the dielectric and piezoelectric properties of xBiFeO3-(1-x)BaTiO3 ceramics near the morphotropic phase boundary, J. Mater. Sci., 52, 10726, 10.1007/s10853-017-1280-6
Li, 2017, High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics, J. Mater. Sci., 52, 229, 10.1007/s10853-016-0325-6
Rojac, 2010, Strong ferroelectric domain-wall pinning in BiFeO3 ceramics, J. Appl. Phys., 108, 10.1063/1.3490249
Rojac, 2014, BiFeO3 ceramics: processing electrical, and electromechanical properties, J. Am. Ceram. Soc., 97, 1993, 10.1111/jace.12982
Gao, 2007, Effects of thermal and electrical histories on hard piezoelectrics: A comparison of internal dipolar fields and external dc bias, J. Appl. Phys., 101, 10.1063/1.2560909
Morozov, 2015, In-situ structural investigations of ferroelasticity in soft and hard rhombohedral and tetragonal PZT, J. Appl. Phys., 118, 10.1063/1.4934615
Hagiwara, 2014, Effects of CuO addition on electrical properties of 0.6BiFeO3-0.4(Bi0.5K0.5)TiO3 lead-free piezoelectric ceramics, J. Am. Ceram. Soc., 98, 469, 10.1111/jace.13287
Tong, 2018, Enhanced piezoelectric response and high-temperature sensitivity by site-selected doping of BiFeO3-BaTiO3 ceramics, J. Eur. Ceram. Soc., 38, 1356, 10.1016/j.jeurceramsoc.2017.10.023
Zheng, 2016, Enhanced piezoelectricity in (1-x)Bi1.05Fe1-yAyO3-xBaTiO3 lead-free ceramics: site engineering and wide phase boundary region, Dalton Trans., 45, 11277, 10.1039/C6DT01805J
Li, 2017, Reduced dielectric loss and enhanced piezoelectric properties of Mn modified 0.71BiFeO3-0.29BaTiO3 ceramics sintered under oxygen atmosphere, J. Mater. Sci., 28, 1370
Schedel-Niedrig, 1995, Phys. Rev. B, 52, 17449, 10.1103/PhysRevB.52.17449
Guo, 2015, Critical roles of Mn-ions in enhancing insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics, J. Mater. Chem. C, 3, 5811, 10.1039/C5TC00507H
Guo, 2017, Strong piezoelectricity and multiferroicity in BiFeO3-BaTiO3-NdCoO3 lead-free piezoelectric ceramics with high Curie temperature for current sensing application, J. Mater. Sci. Mater. Electron., 28, 5531, 10.1007/s10854-016-6216-4
Chen, 2018, Enhanced insulation resistance and electrical properties of BiFe1-x(Zn0.5Ti0.5)xO3-BaTiO3 lead-free piezoceramics, Ceram. Int., 44, 8409, 10.1016/j.ceramint.2018.02.034
Cheng, 2019, Enhanced insulating and piezoelectric properties of BiFeO3-BaTiO3-Bi0.5Na0.5TiO3 ceramics with high Curie temperature, J. Am. Ceram. Soc., 10.1111/jace.16602
Huang, 2009, Effect of Mn doping on electric and magnetic properties of BiFeO3 thin films by chemical solution deposition, J. Appl. Phys., 106, 10.1063/1.3225559
Wang, 2011, Comparative study on aging effect in BiFeO3 thin films substituted at A- and B-sites, Appl. Phys. Lett., 99, 10.1063/1.3672212
Lee, 2012, Electrical properties of thin films deposited with MnO- and MnO2-modified BiFeO3 oxide targets, J. Korean Phys. Soc., 61, 1070, 10.3938/jkps.61.1070
Wang, 2017, Temperature dependent, large electromechanical strain in Nd-doped BiFeO3-BaTiO3 lead-free ceramics, J. Eur. Ceram. Soc., 37, 1857, 10.1016/j.jeurceramsoc.2016.10.027
Fujii, 2011, Structural, dielectric, and piezoelectric properties of Mn-Doped BaTiO3-Bi(Mg1/2Ti1/2)O3-BiFeO3 ceramics, Jpn. J. Appl. Phys., 50, 10.1143/JJAP.50.09ND07
Yang, 2013, Piezoelectric properties and temperature stabilities of Mn- and Cu-modified BiFeO3-BaTiO3 high temperature ceramics, J. Eur. Ceram. Soc., 33, 1177, 10.1016/j.jeurceramsoc.2012.11.019
Gao, 2018, Large electric-field-induced strain and enhanced piezoelectric constant in CuO modified BiFeO3-BaTiO3 ceramics, J. Am. Ceram. Soc., 101, 3383, 10.1111/jace.15499