Large recoverable energy storage density and low sintering temperature in potassium‐sodium niobate‐based ceramics for multilayer pulsed power capacitors

Journal of the American Ceramic Society - Tập 100 Số 4 - Trang 1517-1526 - 2017
Bingyue Qu1, Hongliang Du2, Zetian Yang2, Qinghui Liu1
1College of Physics, Jilin University, Changchun, China
2Science College, Air Force Engineering University, Xi’an, China

Tóm tắt

AbstractMultilayer pulsed power ceramic capacitors require that dielectric ceramics possess not only large recoverable energy storage density (Wrec) but also low sintering temperature (<950°C) for using the inexpensive metals as the electrodes. However, lead‐free bulk ceramics usually show low Wrec (<2 J/cm3) and high sintering temperature (>1150°C), limiting their applications in multilayer pulsed power ceramic capacitors. In this work, large Wrec (~4.02 J/cm3 at 400 kV/cm) and low sintering temperature (940°C) are simultaneously achieved in 0.9(K0.5Na0.5)NbO3–0.1Bi(Mg2/3Nb1/3)O3–1.0 mol% CuO ceramics prepared using transition liquid phase sintering. Wrec of 4.02 J/cm3 is 2‐3 times as large as the reported value of other (Bi0.5Na0.5)TiO3 and BaTiO3‐based lead‐free bulk ceramics. The results reveal that 0.9(K0.5Na0.5)NbO3–0.1Bi(Mg2/3Nb1/3)O3–1.0 mol% CuO ceramics are promising candidates for fabricating multilayer pulsed power ceramic capacitors.

Từ khóa


Tài liệu tham khảo

Randall CA, 2009, High Temperature and High Energy Density Dielectric Materials, 346

10.1111/j.1551-2916.2008.02798.x

10.1016/j.pmatsci.2011.08.001

10.1039/C4EE02962C

10.1039/C4TA04455J

10.1039/C4TC02291B

10.1002/adma.201503186

10.1109/TUFFC.2011.2039

10.1109/TDEI.2004.1349785

10.1021/am502415z

10.1021/acsami.5b02790

10.1002/aenm.201400610

10.1111/jace.13411

10.1007/s10853-006-1116-2

10.1063/1.4893372

10.1016/j.ceramint.2013.07.077

10.1016/j.jeurceramsoc.2013.02.014

10.1039/C4RA08400D

10.1016/j.jeurceramsoc.2012.01.030

10.1016/j.jeurceramsoc.2013.07.028

10.1007/s10853-012-6990-1

10.1007/s10853-013-7849-9

10.1111/j.1551-2916.2011.04731.x

10.1016/j.jeurceramsoc.2014.09.003

10.1039/C5RA21261H

10.1007/s10854-014-2215-5

10.1111/jace.13325

10.1016/j.matlet.2013.09.103

10.1016/j.jeurceramsoc.2015.09.029

10.1007/s10854-013-1071-z

10.1016/j.jeurceramsoc.2011.09.024

10.1039/C5TC04005A

10.1016/j.jeurceramsoc.2013.11.039

10.1007/s10854-015-3757-x

10.1016/j.jallcom.2013.09.052

10.1111/jace.13737

10.1016/j.jallcom.2015.12.194

10.1016/j.jallcom.2015.12.260

10.1016/j.ceramint.2015.10.014

10.1016/j.jeurceramsoc.2015.10.019

10.1016/j.jeurceramsoc.2010.10.033

10.1016/j.jeurceramsoc.2011.04.018

10.1111/j.1551-2916.2007.01893.x

10.1016/j.jeurceramsoc.2013.11.029

Matsubara M, 2005, Piezoelectric properties of (K0.5Na0.5)(Nb1−x Ta x )O3‐K5.4CuTa10O29 ceramics, J Appl Phys, 97, 114105, 10.1063/1.1926396

10.1039/C4TA04282D

10.1007/s10854-013-1248-5

10.1016/j.jeurceramsoc.2011.05.008

10.1111/j.1551-2916.2010.04227.x

10.1111/j.1551-2916.2007.02070.x

10.1039/C6RA01919F

10.1007/s10854-015-3482-5

10.1039/C6TA07803F

10.1111/jace.13412

10.1016/j.jeurceramsoc.2012.08.011

10.1016/j.jallcom.2014.09.171

10.1016/j.materresbull.2008.01.015

10.1111/j.1551-2916.2008.02408.x

Ye Y, 2003, Influence of nanocrystalline grain size of the breakdown strength of ceramics dielectrics, Proc–IEEE Int Pulsed Power Conf, 1, 719

10.1109/TUFFC.2008.743

10.1088/0022-3727/41/4/045401

10.1111/j.1551-2916.2006.01465.x

10.1142/S2010135X13300016

10.1007/BF00275336

10.1007/s10853-015-9446-6