Origin and magnitude of the large piezoelectric response in the lead-free (1-x)BiFeO3-xBaTiO3 solid solution
Tóm tắt
Mechanisms and magnitudes of the large piezoelectric response observed in lead-free (1-x) BiFeO3-xBaTiO3 (BFBT) ceramics are investigated. Preceding studies reported significant strain hysteresis and hard ferroelectric behavior in BFBT leading to a small low-field piezoelectric coefficient, instability of the poled domain state, and rapid degradation of piezoelectric properties. The current investigation shows that under application of a suitable direct current (dc) bias to stabilize the ferroelectric phase low- and high-field piezoelectric coefficients (d33) of 150 pC/N and 250 pC/N are observed for the composition 0.67BiFeO3-0.33BaTiO3 + 0.1 wt% MnO with a Curie temperature of 605 °C. Such enhancement of electromechanical properties under dc bias is in contrast to the expected behavior in traditional piezoelectric materials such as soft lead zirconate titanate (PZT). The large piezoelectric coefficients confirm strong intrinsic and extrinsic contributions to the piezoelectric response in BFBT, which coupled with high ferroelectric Curie temperature TC > 500 °C, suggests BFBT-based materials as promising lead-free alternatives to PZT piezoceramics.
Tài liệu tham khảo
R.B. Gray: Transducer and method of making the same, in United States Patent Office (Erie Resistor Corporation, Erie, PA, 1949).
S. Roberts: Dielectric and piezoelectric properties of barium titanate. Phys. Rev. 71, 890 (1947).
G. Catalan and J.F. Scott: Physics and application of bismuth ferrite. Adv. Mater. 21, 2463 (2009).
F. Jona and G. Shirane: Ferroelectric Crystals (Dover Publications Inc., New York, 1993).
H. Jaffe: Piezoelectric ceramics. J. Am. Ceram. Soc. 41, 494 (1958).
S. Wada, K. Takeda, T. Muraishi, H. Kakemoto, T. Tsurumi, and T. Kimura: Domain wall engineering in lead-free piezoelectric grain-oriented ceramics. Ferroelectrics 373, 11 (2008).
C. Michel, J.M. Moreau, G.D. Achenbac, R. Gerson, and W.J. James: Atomic structures of 2 rhombohedral ferroelectric phases in Pb(Zr, Ti)O3 solid solution series. Solid State Commun. 7, 865 (1969).
J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, and R. Ramesh: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).
V.V. Shvartsman, W. Kleemann, R. Haumont, and J. Kreisel: Large bulk polarization and regular domain structure in ceramic BiFeO3. Appl. Phys. Lett. 90, 172115 (2007).
N.A. Hill: Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694 (2000).
M.M. Kumar, A. Srinivas, and S.V. Suryanarayana: Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 87, 855 (2000).
N. Itoh, T. Shimura, W. Sakamoto, and T. Yogo: Fabrication and characterization of BiFeO3-BaTiO3 ceramics by solid state reaction. Ferroelectrics 356, 311 (2007).
Y. Horibe, M. Nakayama, Y. Hosokoshi, T. Asaka, Y. Matsui, T. Asada, Y. Koyama, and S. Mori: Microstructures associated with dielectric and magnetic properties in (1-x)BiFeO3- xBaTiO3. Jpn. J. Appl. Phys., Part 1 44, 7148 (2005).
S. Kitagawa, T. Ozaki, Y. Horibe, K. Yoshii, and S. Mori: Ferroelectric domain structures in BiFeO3-BaTiO3. Ferroelectrics 376, 318 (2008).
S.O. Leontsev and R.E. Eitel: Dielectric and piezoelectric properties in Mn-modified (l-x)BiFeO3-xBaTiO3 ceramics. J. Am. Ceram. Soc. 92, 2957 (2009).
Y. Yoneda, K. Yoshii, S. Kohara, S. Kitagawa, and S. Mori: Local structure of BiFeO3-BaTiO3 mixture. Jpn. J. Appl. Phys. 47, 7590 (2008).
D. Damjanovic and M. Demartin: The Rayleigh law in piezoelectric ceramics. J. Phys. D: Appl. Phys. 29, 2057 (1996).
D.A. Hall: Review: Nonlinearity in piezoelectric ceramics. J. Mater. Sci. 36, 4575 (2001).
R.E. Eitel, T.R. Shrout, and C.A. Randall: Nonlinear contributions to the dielectric permittivity and converse piezoelectric coefficient in piezoelectric ceramics. J. Appl. Phys. 99, 124110 (2006).
R.E. Eitel and C.A. Randall: Octahedral tilt-suppression of ferroelectric domain wall dynamics and the associated piezoelectric activity in Pb(Zr, Ti)O3. Phys. Rev. B 75, 094106 (2007).
D. Damjanovic: Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82, 1788 (1997).
IRE Standards on Piezoelectric Crystals: Measurements of piezoelectric ceramics. Proc. Inst. Radio Eng. 49, 1161 (1961).
A. Pramanick, D. Damjanovic, J.C. Nino, and J.L. Jones: Sub-coercive cyclic electrical loading of lead zirconate titanate ceramics. I: Nonlinearities and losses in the converse piezoelectric effect. J. Am. Ceram. Soc. 92, 2291 (2009).
Y.J. Dai, S.J. Zhang, T.R. Shrout, and X.W. Zhang: Piezoelectric and ferroelectric properties of Li-doped (Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 93, 1108 (2010).
Y. Hiruma, H. Nagata, and T. Takenaka: Depolarization temperature and piezoelectric properties of (Bi1/2Na1/2)TiO3-(Bi1/2Li1/2) TiO3-(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. Ceram. Int. 35, 117 (2009).
T.R. Shrout and S.J. Zhang: Lead-free piezoelectric ceramics: Alternatives for PZT? J. Electroceram. 19, 111 (2007).
T. Takenaka, H. Nagata, and Y. Hiruma: Current developments and prospective of lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 47, 3787 (2008).
D.A. Berlincourt, D.R. Curran, and H. Jaffe: Physical Acoustics: Principle and Methods, edited by W.P. Mason (Academic Press, New York, 1964).
S.J. Zhang, R.E. Eitel, C.A. Randall, T.R. Shrout, and E.F. Alberta: Manganese-modified BiScO3-PbTiO3 piezoelectric ceramic for high-temperature shear mode sensor. Appl. Phys. Lett. 86, 262904 (2005).
Q.M. Zhang, H. Wang, N. Kim, and L.E. Cross: Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature-dependence on lead-zirconate-titanate ceramics. J. Appl. Phys. 75, 454 (1994).
E. Hollenstein, M. Davis, D. Damjanovic, and N. Setter: Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl. Phys. Lett. 87, 182905 (2005).
S.P. Li, A.S. Bhalla, R.E. Newnham, and L.E. Cross: Quantitative-evaluation of extrinsic contribution to piezoelectric coefficient d33 in ferroelectric PZT ceramics. Mater. Lett. 17, 21 (1993).
Q.M. Zhang, W.Y. Pan, S.J. Jang, and L.E. Cross: Domain-wall excitations and their contributions to the weak-signal response of doped lead zirconate titanate ceramics. J. Appl. Phys. 64, 6445 (1988).
V. Perrin, M. Troccaz, and P. Gonnard: Non-linear behavior of the permittivity and of the piezoelectric strain constant under high electric field drive. J. Electroceram. 4, 189 (2000).
T. Ozaki, S. Kitagawa, S. Nishihara, Y. Hosokoshi, M. Suzuki, Y. Noguchi, M. Miyayama, and S. Mori: Ferroelectric properties and nano-scaled domain structures in (l-x)BiFeO3-xBaTiO3 (0.33 < x < 0.50). Ferroelectrics 385, 155 (2009).
S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, and J. Rodel: Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91, 112906 (2007).
S.T. Zhang, A.B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg, and J. Rodel: Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. II. Temperature dependent properties. J. Appl. Phys. 103, 034108 (2008).
J.F. Scott: Leading the way to lead-free. ChemPhysChem 11, 341 (2010).
R.J. Zeches, M.D. Rossell, J.X. Zhang, A.J. Hart, Q. He, C.H. Yang, A. Kumar, C.H. Wang, A. Melville, C. Adamo, G. Sheng, Y.H. Chu, J.F. Ihlefeld, R. Erni, C. Ederer, V. Gopalan, L.Q. Chen, D.G. Schlom, N.A. Spaldin, L.W. Martin, and R. Ramesh: A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977 (2009).
E.K. Akdogan, K. Kerman, M. Abazari, and A. Safari: Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)-(Nb0.84Ta0.1Sb0.06)O3 ceramics. Appl. Phys. Lett. 92, 112908 (2008).