<scp><scp>BiFeO</scp></scp><sub>3</sub> Ceramics: Processing, Electrical, and Electromechanical Properties

Journal of the American Ceramic Society - Tập 97 Số 7 - Trang 1993-2011 - 2014
Tadej Rojac1, Andreja Benčan1, Barbara Malič1, Goknur Tutuncu2, Jacob L. Jones3, J. Daniels4, Dragan Damjanović5
1Electronic Ceramics Department, Jozef Stefan Institute, Ljubljana, 1000 Slovenia
2Department of Materials Science and Engineering, University of Florida, Gainesville, 32611 Florida
3Department of Materials Science and Engineering, North Carolina State University, Raleigh, 27695 North Carolina
4School of Materials Science and Engineering, University of New South Wales, NSW 2052, Australia
5Ceramics Laboratory, Swiss Federal Institute of Technology (EPFL), Lausanne 1015, Switzerland

Tóm tắt

Bismuth ferrite (BiFeO3), a perovskite material, rich in properties and with wide functionality, has had a marked impact on the field of multiferroics, as evidenced by the hundreds of articles published annually over the past 10 years. Studies from the very early stages and particularly those on polycrystalline BiFeO3 ceramics have been faced with difficulties in the preparation of the perovskite free of secondary phases. In this review, we begin by summarizing the major processing issues and clarifying the thermodynamic and kinetic origins of the formation and stabilization of the frequently observed secondary, nonperovskite phases, such as Bi25FeO39 and Bi2Fe4O9. The second part then focuses on the electrical and electromechanical properties of BiFeO3, including the electrical conductivity, dielectric permittivity, high‐field polarization, and strain response, as well as the weak‐field piezoelectric properties. We attempt to establish a link between these properties and address, in particular, the macroscopic response of the ceramics under an external field in terms of the dynamic interaction between the pinning centers (e.g., charged defects) and the ferroelectric/ferroelastic domain walls.

Từ khóa


Tài liệu tham khảo

10.1126/science.1080615

10.1007/s11434-008-0308-3

10.1002/adma.200802849

10.1063/1.2753390

10.1038/nnano.2009.293

10.1038/nmat2703

10.1002/adma.201003612

10.1111/j.1551-2916.2009.03061.x

10.1038/nchem.609

10.1016/S0022-3697(71)80189-0

10.1063/1.2169905

10.1016/j.ssc.2012.04.067

10.1016/j.ssc.2011.12.044

10.1016/j.matlet.2004.07.021

10.1016/j.materresbull.2012.09.027

Comyn T. P., 2005, Piezoelectric Properties of BiFeO3–PbTiO3 Ceramics, J. Phys. IV France, 128, 3

10.1111/j.1551-2916.2009.03313.x

10.1557/jmr.2010.44

10.1007/s10853-009-3545-1

10.1063/1.2931706

10.1002/adfm.200902017

10.1080/00150190208260624

10.2109/jcersj2.117.939

10.1016/j.solidstatesciences.2011.10.008

10.1063/1.3452324

10.1111/j.1551-2916.2011.04824.x

10.1063/1.4772588

10.2109/jcersj2.118.659

10.1016/0038-1098(69)90597-3

10.1107/S0108768190006887

10.1007/s11669-004-0171-0

10.1103/PhysRevB.77.014110

Speranskaya E. I., 1965, The Phase Diagram of the System Bismuth Oxide – Ferric Oxide, Bull. Acad. Sci. U.S.S.R, 5, 3

Skinner S. M., 1970, Magnetically Ordered Ferroelectric Materials, IEEE Trans. PMP, 6, 68

Filip'ev V. S., 1960, Synthesis of BiFeO3 and Determination of the Unit Cell, Sov. Phys. – Crystallogr., 5, 913

Fedulov S. A., 1961, High‐Temperature X‐Ray and Thermal‐Analysis Results for Bismuth Ferrite, Sov. Phys. – Crystallogr., 6, 640

10.1111/j.1151-2916.1967.tb15153.x

10.1023/B:RUGC.0000018640.30953.70

10.1016/j.jssc.2006.08.036

10.1016/j.matlet.2008.05.051

10.1021/cm802607p

10.1016/j.jnucmat.2007.05.036

10.1021/cm071730

10.1002/zaac.19784440118

Sillen L. G., 1937, X‐Ray Studies on Bismuth Trioxide, Ark. Kemi. Mineral. Geol., 12, 1

10.6028/jres.068A.020

10.1016/0022-4596(75)90264-9

10.1016/j.materresbull.2004.10.018

10.1088/0022-3727/41/18/185401

10.1016/j.jmmm.2009.05.059

10.1016/j.jeurceramsoc.2009.09.016

10.1080/10584580701755872

10.3938/jkps.56.439

10.1134/S0020168510040187

10.1016/j.jallcom.2011.04.087

10.1021/cm303743h

10.1016/j.jssc.2010.03.014

10.1103/PhysRevB.78.134108

10.1107/S0021889872009173

10.1016/j.jeurceramsoc.2011.03.018

Slinkina M. V., 1992, Difuzija Sovstvenih Komponentov V Keramike Cirkonata‐Titanata Svinca., Neorganičeskie Materiali., 28, 567

10.1111/j.1551-2916.2008.02376.x

10.1007/BF00585489

10.1111/j.1151-2916.1971.tb12162.x

10.1007/BF00540726

10.1007/s00216-004-2712-0

10.1016/j.jeurceramsoc.2008.03.029

10.1063/1.3490249

10.1063/1.2150249

10.1557/JMR.2001.0227

10.1103/PhysRevB.75.024403

10.1140/epjb/e2010-00170-x

Jonscher A. K., 1983, Dielectric Relaxation in Solids

10.1063/1.3284954

10.1063/1.2229667

10.1063/1.3078825

10.1103/PhysRevB.70.172102

10.1088/0022-3727/43/44/445403

10.1021/cm070790c

10.1016/j.matlet.2007.07.075

10.1016/j.materresbull.2008.07.017

10.1016/j.jallcom.2008.07.082

10.1016/j.physb.2011.03.050

10.1016/j.ceramint.2011.05.020

10.1016/j.ssc.2006.02.005

10.1111/j.1551-2916.2011.04861.x

10.1007/s10832-011-9660-9

10.1063/1.1667612

10.1063/1.1881775

10.1063/1.2345603

10.1111/j.1551-2916.2006.01186.x

10.1016/j.jallcom.2012.06.110

10.1088/0022-3727/41/6/065003

10.1063/1.3447369

10.1103/PhysRevB.85.104409

10.1063/1.3070532

10.1016/0022-3697(96)00020-0

10.1007/s11244-011-9712-z

10.1016/0925-4005(91)80167-I

10.1063/1.2177430

10.12693/APhysPolA.113.1095

10.1002/adfm.201201490

10.1021/cm300683e

10.1016/j.msea.2006.01.117

10.1088/0953-8984/20/02/021001

10.1016/B978-012480874-4/50022-1

10.1063/1.2147719

10.1063/1.2390625

10.1063/1.2776864

10.1063/1.2786013

10.1063/1.3702405

10.3938/jkps.60.83

10.1080/00150197808236770

10.1063/1.2963704

10.1016/0022-3697(86)90042-9

10.1103/PhysRevB.73.094121

10.1038/nmat1051

10.1016/j.jeurceramsoc.2004.11.022

10.1039/b918782k

10.1063/1.352948

10.1063/1.115058

10.1063/1.362600

10.1111/j.1151-2916.1996.tb08162.x

10.1103/PhysRevB.88.024107

10.1103/PhysRevB.88.214116

10.1007/s00339-009-5366-0

10.1103/PhysRevB.77.134115

10.1063/1.3006327

10.1016/j.ijsolstr.2008.11.021

10.1021/nl304229k

10.1038/nmat2373

10.1103/PhysRevLett.105.197603

10.1103/PhysRevLett.107.127601

10.1021/nl104363x

10.1016/0022-3697(70)90168-X

Postnikov V. S., 1968, Interaction Between 90o Domain Walls and Point Defects of the Crystal Lattice in Ferroelectric Ceramics, Sov. Phys. – Solid State, 10, 1267

10.1063/1.3679084

10.1063/1.4754315

10.1088/0256-307X/29/4/047701

10.1088/0034-4885/61/9/002

Uchino K., 2000, Ferroelectric Devices

10.1143/JJAP.36.5970

10.1126/science.1177046

10.1038/nnano.2010.265

10.1103/PhysRevB.88.020402

10.1109/TUFFC.2009.1218

10.1111/j.1551-2916.2009.03219.x

10.1063/1.1849821

10.1111/j.1551-2916.2010.04240.x

10.1063/1.1988978

10.1111/j.1551-2916.2006.01062.x

10.1063/1.2731312

10.1007/s00339-009-5499-1

10.1088/0953-8984/9/23/018

10.1063/1.347616

10.1063/1.365981

10.1063/1.2207738

10.1063/1.2894595

10.1063/1.1412272