Thermally stable piezoelectric properties of (K, Na)NbO3-based lead-free perovskite with rhombohedral-tetragonal coexisting phase

Acta Materialia - Tập 122 - Trang 344-351 - 2017
Mao-Hua Zhang1, Ke Wang1, Jin-Song Zhou1, Jia-Jun Zhou2, Xiangcheng Chu1, Xiang Lv3, Jiagang Wu3, Jing-Feng Li1
1State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
2Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, PR China
3Department of Materials Science, Sichuan University, Chengdu 610064, PR China

Tài liệu tham khảo

Rödel, 2009, Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc., 92, 1153, 10.1111/j.1551-2916.2009.03061.x

Hong, 2016, Lead-free piezoceramics - where to move on?, J. Materiomics, 2, 1, 10.1016/j.jmat.2015.12.002

Yao, 2016, Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics, Adv. Funct. Mater., 26, 1217, 10.1002/adfm.201504256

Aksel, 2010, Advances in lead-free piezoelectric materials for sensors and actuators, Sensors, 10, 1935, 10.3390/s100301935

Priya, 2011

Wada, 2007, Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties, Jpn. J. Appl. Phys., 46, 372, 10.1143/JJAP.46.7039

Zhang, 2015, Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics, Nat. Commun., 6, 6615, 10.1038/ncomms7615

Cheng, 2014, Achieving both giant d33 and high Tc in potassium-sodium niobate ternary system, ACS Appl. Mater. interfaces, 6, 750, 10.1021/am404793e

Wu, 2015, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries, Chem. Rev., 115, 2559, 10.1021/cr5006809

Malič, 2015, Sintering of lead-free piezoelectric sodium potassium niobate ceramics, Materials, 8, 8117, 10.3390/ma8125449

Liu, 2009, Hydrothermal synthesis and spark plasma sintering of (K, Na)NbO3 lead-free piezoceramics, J. Am. Ceram. Soc., 92, 1884, 10.1111/j.1551-2916.2009.03126.x

Wang, 2011, High normalized strain obtained in Li-modified (K,Na)NbO3 lead-free piezoceramics, Appl. Phys. Express, 4, 061501, 10.1143/APEX.4.061501

Yao, 2013, Fatigue-free unipolar strain behavior in CaZrO3 and MnO2 co-modified (K,Na)NbO3-based lead-free piezoceramics, Appl. Phys. Lett., 103, 192907, 10.1063/1.4829150

Liu, 2016, Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics, Adv. Mater., 28, 574, 10.1002/adma.201503768

Bortolani, 2014, High strain in (K,Na)NbO3-based lead-free piezoelectric fibers, Chem. Mater., 26, 3838, 10.1021/cm501538x

Choi, 2012, Gigantic electrostrain in duplex structured alkaline niobates, Chem. Mater., 24, 3363, 10.1021/cm301324h

Hinterstein, 2015, Interplay of strain mechanisms in morphotropic piezoceramics, Acta Mater., 94, 319, 10.1016/j.actamat.2015.04.017

Wang, 2010, Domain engineering of lead-free Li-modified (K,Na)NbO3 polycrystals with highly enhanced piezoelectricity, Adv. Funct. Mater., 20, 1924, 10.1002/adfm.201000284

Yao, 2015, Nanodomain engineered (K, Na)NbO3 lead-free piezoceramics: enhanced thermal and cycling reliabilities, J. Am. Ceram. Soc., 98, 448, 10.1111/jace.13265

Yao, 2014, Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics, RSC Adv., 4, 20062, 10.1039/C4RA01697A

Khansur, 2015, Enhanced extrinsic domain switching strain in core–shell structured BaTiO3–KNbO3 ceramics, Acta Mater., 98, 182, 10.1016/j.actamat.2015.07.034

Rödel, 2015, Transferring lead-free piezoelectric ceramics into application, J. Eur. Ceram. Soc., 35, 1659, 10.1016/j.jeurceramsoc.2014.12.013

Li, 2008, A shear-mode ultrasonic motor using potassium sodium niobate-based ceramics with high mechanical quality factor, Jpn. J. Appl. Phys., 47, 7702, 10.1143/JJAP.47.7702

Kawada, 2009, (K,Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes, Appl. Phys. Express, 2, 111401, 10.1143/APEX.2.111401

Kobayashi, 2013, Possibility of cofiring a nickel inner electrode in a (Na0.5K0.5)NbO3-LiF piezoelectric actuator, Jpn. J. Appl. Phys., 52, 365, 10.7567/JJAP.52.09KD07

Akdoğan, 2008, Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)−(Nb0.84Ta0.1Sb0.06)O3 ceramics, Appl. Phys. Lett., 92, 112908, 10.1063/1.2897033

Li, 2013, (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges, J. Am. Ceram. Soc., 96, 3677, 10.1111/jace.12715

Zuo, 2008, Na0.5K0.5NbO3–BiFeO3 lead-free piezoelectric ceramics, J. Phys. Chem. Solids, 69, 230, 10.1016/j.jpcs.2007.08.066

Zhang, 2014, The missing boundary in the phase diagram of PbZr(1-x)TixO3, Nat. Commun., 5, 10.1038/ncomms6231

Wang, 2015, Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary, J. Am. Ceram. Soc., 98, 2177, 10.1111/jace.13604

Zuo, 2011, Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics, J. Am. Ceram. Soc., 94, 1467, 10.1111/j.1551-2916.2010.04256.x

Liang, 2011, New crystallographic dielectric phase boundary in K0.5Na0.5NbO3-based lead-free ceramics, Phys. Status Solidi (RRL) - Rapid Res. Lett., 5, 220, 10.1002/pssr.201105131

Wang, 2007, Analysis of crystallographic evolution in (Na,K)NbO3-based lead-free piezoceramics by x-ray diffraction, Appl. Phys. Lett., 91, 262902, 10.1063/1.2825280

Zushi, 2013, formation of morphotropic phase boundary in (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics, Jpn. J. Appl. Phys., 52, 10.7567/JJAP.52.07HB02

Zhou, 2015, Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity, J. Mater. Chem. C, 3, 8780, 10.1039/C5TC01357G

Yuan, 2015, Composition design and electrical properties in (1-y)(K0.40Na0.60)0.985Li0.015(Nb1−xSbx)O3-yBi0.5Na0.5ZrO3 lead-free ceramics, J. Appl. Phys., 117, 084103, 10.1063/1.4913284

Wu, 2014, Phase boundary, poling conditions, and piezoelectric activity and their relationships in (K0.42Na0.58)(Nb0.96Sb0.04)O3–(Bi0.5K0.5)0.90Zn0.10ZrO3 lead-free ceramics, RSC Adv., 4, 64835, 10.1039/C4RA11994K

Chen, 2015, Intergranular stress induced phase transition in CaZrO3 modified KNN-based lead-free piezoelectrics, J. Am. Ceram. Soc., 98, 1372, 10.1111/jace.13461

Liu, 2010, Synthesis and evaluation of corrosion resistance of molybdate-based conversion coatings on electroplated zinc, Surf. Coat. Technol., 205, 2328, 10.1016/j.surfcoat.2010.09.018

Dai, 2007, Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics, Appl. Phys. Lett., 90, 262903, 10.1063/1.2751607

Kakimoto, 2005, Raman scattering study of piezoelectric (Na0.5K0.5)NbO3-LiNbO3 ceramics, Jpn. J. Appl. Phys., 44, 7064, 10.1143/JJAP.44.7064

Kakimoto, 2010, Pressure-dependent Raman scattering spectrum of piezoelectric (Li,Na,K)NbO3 lead-free ceramics, Jpn. J. Appl. Phys., 49, 10.1143/JJAP.49.09MD10

Rout, 2010, Dielectric and Raman scattering studies of phase transitions in the (100-x)Na0.5Bi0.5TiO3–xSrTiO3 system, J. Appl. Phys., 108, 084102, 10.1063/1.3490781

Zheng, 2015, Strong piezoelectricity in (1-x)(K0.4Na0.6)(Nb0.96Sb0.04)O3-xBi0.5K0.5Zr1-ySnyO3 lead-free binary system: identification and role of multiphase coexistence, ACS Appl. Mater. interfaces, 7, 5927, 10.1021/acsami.5b00151

Zhang, 2007, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system, Appl. Phys. Lett., 91, 112906, 10.1063/1.2783200

Wang, 2012, Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics, J. Am. Ceram. Soc., 95, 2241, 10.1111/j.1551-2916.2012.05162.x

Wang, 2013, Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics, Adv. Funct. Mater., 23, 4079, 10.1002/adfm.201203754

Yao, 2013, Comprehensive investigation of elastic and electrical properties of Li/Ta-modified (K,Na)NbO3 lead-free piezoceramics, J. Appl. Phys., 113, 174105, 10.1063/1.4803711

Groh, 2014, Relaxor/ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics, Adv. Funct. Mater., 24, 356, 10.1002/adfm.201302102

Damjanovic, 1998, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys., 61, 1267, 10.1088/0034-4885/61/9/002

Jo, 2009, Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics, J. Appl. Phys., 105, 094102, 10.1063/1.3121203

Birol, 2005, Preparation and characterization of KNbO3 ceramics, J. Am. Ceram. Soc., 88, 1754, 10.1111/j.1551-2916.2005.00347.x