Thermally stable piezoelectric properties of (K, Na)NbO3-based lead-free perovskite with rhombohedral-tetragonal coexisting phase
Tài liệu tham khảo
Rödel, 2009, Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc., 92, 1153, 10.1111/j.1551-2916.2009.03061.x
Hong, 2016, Lead-free piezoceramics - where to move on?, J. Materiomics, 2, 1, 10.1016/j.jmat.2015.12.002
Yao, 2016, Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics, Adv. Funct. Mater., 26, 1217, 10.1002/adfm.201504256
Aksel, 2010, Advances in lead-free piezoelectric materials for sensors and actuators, Sensors, 10, 1935, 10.3390/s100301935
Priya, 2011
Wada, 2007, Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties, Jpn. J. Appl. Phys., 46, 372, 10.1143/JJAP.46.7039
Zhang, 2015, Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics, Nat. Commun., 6, 6615, 10.1038/ncomms7615
Cheng, 2014, Achieving both giant d33 and high Tc in potassium-sodium niobate ternary system, ACS Appl. Mater. interfaces, 6, 750, 10.1021/am404793e
Wu, 2015, Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries, Chem. Rev., 115, 2559, 10.1021/cr5006809
Malič, 2015, Sintering of lead-free piezoelectric sodium potassium niobate ceramics, Materials, 8, 8117, 10.3390/ma8125449
Liu, 2009, Hydrothermal synthesis and spark plasma sintering of (K, Na)NbO3 lead-free piezoceramics, J. Am. Ceram. Soc., 92, 1884, 10.1111/j.1551-2916.2009.03126.x
Wang, 2011, High normalized strain obtained in Li-modified (K,Na)NbO3 lead-free piezoceramics, Appl. Phys. Express, 4, 061501, 10.1143/APEX.4.061501
Yao, 2013, Fatigue-free unipolar strain behavior in CaZrO3 and MnO2 co-modified (K,Na)NbO3-based lead-free piezoceramics, Appl. Phys. Lett., 103, 192907, 10.1063/1.4829150
Liu, 2016, Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics, Adv. Mater., 28, 574, 10.1002/adma.201503768
Bortolani, 2014, High strain in (K,Na)NbO3-based lead-free piezoelectric fibers, Chem. Mater., 26, 3838, 10.1021/cm501538x
Choi, 2012, Gigantic electrostrain in duplex structured alkaline niobates, Chem. Mater., 24, 3363, 10.1021/cm301324h
Hinterstein, 2015, Interplay of strain mechanisms in morphotropic piezoceramics, Acta Mater., 94, 319, 10.1016/j.actamat.2015.04.017
Wang, 2010, Domain engineering of lead-free Li-modified (K,Na)NbO3 polycrystals with highly enhanced piezoelectricity, Adv. Funct. Mater., 20, 1924, 10.1002/adfm.201000284
Yao, 2015, Nanodomain engineered (K, Na)NbO3 lead-free piezoceramics: enhanced thermal and cycling reliabilities, J. Am. Ceram. Soc., 98, 448, 10.1111/jace.13265
Yao, 2014, Ferroelectric domain morphology and temperature-dependent piezoelectricity of (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics, RSC Adv., 4, 20062, 10.1039/C4RA01697A
Khansur, 2015, Enhanced extrinsic domain switching strain in core–shell structured BaTiO3–KNbO3 ceramics, Acta Mater., 98, 182, 10.1016/j.actamat.2015.07.034
Rödel, 2015, Transferring lead-free piezoelectric ceramics into application, J. Eur. Ceram. Soc., 35, 1659, 10.1016/j.jeurceramsoc.2014.12.013
Li, 2008, A shear-mode ultrasonic motor using potassium sodium niobate-based ceramics with high mechanical quality factor, Jpn. J. Appl. Phys., 47, 7702, 10.1143/JJAP.47.7702
Kawada, 2009, (K,Na)NbO3-based multilayer piezoelectric ceramics with nickel inner electrodes, Appl. Phys. Express, 2, 111401, 10.1143/APEX.2.111401
Kobayashi, 2013, Possibility of cofiring a nickel inner electrode in a (Na0.5K0.5)NbO3-LiF piezoelectric actuator, Jpn. J. Appl. Phys., 52, 365, 10.7567/JJAP.52.09KD07
Akdoğan, 2008, Origin of high piezoelectric activity in ferroelectric (K0.44Na0.52Li0.04)−(Nb0.84Ta0.1Sb0.06)O3 ceramics, Appl. Phys. Lett., 92, 112908, 10.1063/1.2897033
Li, 2013, (K,Na)NbO3-based lead-free piezoceramics: fundamental aspects, processing technologies, and remaining challenges, J. Am. Ceram. Soc., 96, 3677, 10.1111/jace.12715
Zuo, 2008, Na0.5K0.5NbO3–BiFeO3 lead-free piezoelectric ceramics, J. Phys. Chem. Solids, 69, 230, 10.1016/j.jpcs.2007.08.066
Zhang, 2014, The missing boundary in the phase diagram of PbZr(1-x)TixO3, Nat. Commun., 5, 10.1038/ncomms6231
Wang, 2015, Temperature stability of lead-free niobate piezoceramics with engineered morphotropic phase boundary, J. Am. Ceram. Soc., 98, 2177, 10.1111/jace.13604
Zuo, 2011, Rhombohedral-tetragonal phase coexistence and piezoelectric properties of (NaK)(NbSb)O3-LiTaO3-BaZrO3 lead-free ceramics, J. Am. Ceram. Soc., 94, 1467, 10.1111/j.1551-2916.2010.04256.x
Liang, 2011, New crystallographic dielectric phase boundary in K0.5Na0.5NbO3-based lead-free ceramics, Phys. Status Solidi (RRL) - Rapid Res. Lett., 5, 220, 10.1002/pssr.201105131
Wang, 2007, Analysis of crystallographic evolution in (Na,K)NbO3-based lead-free piezoceramics by x-ray diffraction, Appl. Phys. Lett., 91, 262902, 10.1063/1.2825280
Zushi, 2013, formation of morphotropic phase boundary in (Na0.5K0.5)NbO3–BaZrO3–(Bi0.5Li0.5)TiO3 lead-free piezoelectric ceramics, Jpn. J. Appl. Phys., 52, 10.7567/JJAP.52.07HB02
Zhou, 2015, Multi-scale thermal stability of niobate-based lead-free piezoceramics with large piezoelectricity, J. Mater. Chem. C, 3, 8780, 10.1039/C5TC01357G
Yuan, 2015, Composition design and electrical properties in (1-y)(K0.40Na0.60)0.985Li0.015(Nb1−xSbx)O3-yBi0.5Na0.5ZrO3 lead-free ceramics, J. Appl. Phys., 117, 084103, 10.1063/1.4913284
Wu, 2014, Phase boundary, poling conditions, and piezoelectric activity and their relationships in (K0.42Na0.58)(Nb0.96Sb0.04)O3–(Bi0.5K0.5)0.90Zn0.10ZrO3 lead-free ceramics, RSC Adv., 4, 64835, 10.1039/C4RA11994K
Chen, 2015, Intergranular stress induced phase transition in CaZrO3 modified KNN-based lead-free piezoelectrics, J. Am. Ceram. Soc., 98, 1372, 10.1111/jace.13461
Liu, 2010, Synthesis and evaluation of corrosion resistance of molybdate-based conversion coatings on electroplated zinc, Surf. Coat. Technol., 205, 2328, 10.1016/j.surfcoat.2010.09.018
Dai, 2007, Phase transitional behavior in K0.5Na0.5NbO3–LiTaO3 ceramics, Appl. Phys. Lett., 90, 262903, 10.1063/1.2751607
Kakimoto, 2005, Raman scattering study of piezoelectric (Na0.5K0.5)NbO3-LiNbO3 ceramics, Jpn. J. Appl. Phys., 44, 7064, 10.1143/JJAP.44.7064
Kakimoto, 2010, Pressure-dependent Raman scattering spectrum of piezoelectric (Li,Na,K)NbO3 lead-free ceramics, Jpn. J. Appl. Phys., 49, 10.1143/JJAP.49.09MD10
Rout, 2010, Dielectric and Raman scattering studies of phase transitions in the (100-x)Na0.5Bi0.5TiO3–xSrTiO3 system, J. Appl. Phys., 108, 084102, 10.1063/1.3490781
Zheng, 2015, Strong piezoelectricity in (1-x)(K0.4Na0.6)(Nb0.96Sb0.04)O3-xBi0.5K0.5Zr1-ySnyO3 lead-free binary system: identification and role of multiphase coexistence, ACS Appl. Mater. interfaces, 7, 5927, 10.1021/acsami.5b00151
Zhang, 2007, Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3 system, Appl. Phys. Lett., 91, 112906, 10.1063/1.2783200
Wang, 2012, Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3-SrTiO3 lead-free piezoceramics, J. Am. Ceram. Soc., 95, 2241, 10.1111/j.1551-2916.2012.05162.x
Wang, 2013, Temperature-insensitive (K,Na)NbO3-based lead-free piezoactuator ceramics, Adv. Funct. Mater., 23, 4079, 10.1002/adfm.201203754
Yao, 2013, Comprehensive investigation of elastic and electrical properties of Li/Ta-modified (K,Na)NbO3 lead-free piezoceramics, J. Appl. Phys., 113, 174105, 10.1063/1.4803711
Groh, 2014, Relaxor/ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics, Adv. Funct. Mater., 24, 356, 10.1002/adfm.201302102
Damjanovic, 1998, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics, Rep. Prog. Phys., 61, 1267, 10.1088/0034-4885/61/9/002
Jo, 2009, Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free piezoceramics, J. Appl. Phys., 105, 094102, 10.1063/1.3121203