Lead-free piezoceramics

Nature - Tập 432 Số 7013 - Trang 84-87 - 2004
Yasuyoshi Saito1, Naoko Takahashi, Toshihiko Tani, T. Nonoyama, Kazumasa Takatori, Takahiko Homma, Toshiatsu Nagaya, Masaya Nakamura
1Toyota Central R&D Laboratories, Inc., Nagakute, Aichi, 480-1192, Japan. [email protected]

Tóm tắt

Từ khóa


Tài liệu tham khảo

Haertling, G. E. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

Takenaka, T. & Nagata, H. Present status of non-lead-based piezoelectric ceramics. Key Eng. Mater. 157–158, 57–64 (1999)

Jaeger, R. E. & Egerton, L. Hot pressing of potassium-sodium niobates. J. Am. Ceram. Soc. 45, 209–213 (1962)

Dungan, R. H. & Golding, R. D. Polarization of NaNbO3-KNbO3 ceramic solid solutions. J. Am. Ceram. Soc. 48, 601 (1965)

Haertling, G. H. Properties of hot-pressed ferroelectric alkali niobate ceramics. J. Am. Ceram. Soc. 50, 329–330 (1967)

Egerton, L. & Bieling, C. A. Isostatically hot-pressed sodium-potassium niobate transducer material for ultrasonic devices. Ceram. Bull. 47, 1151–1156 (1968)

Aurivillius, B. Mixed bismuth oxides with layer lattices. Ark. Kemi 1, 499 (1949)

Wood, A. Polymorphism in potassium niobate, sodium niobate, and other ABO3 compounds. Acta Crystallogr. 4, 353–362 (1951)

Buhrer, C. F. Some properties of bismuth perovskites. J. Chem. Phys. 36, 798–803 (1962)

Nitta, T. Properties of sodium-lithium niobate solid solution ceramics with small lithium concentrations. J. Am. Ceram. Soc. 51, 626–629 (1968)

Scot, B. A., Giess, E. A., Burns, G. & O'Kane, D. F. Alkali-rare earth niobates with the tungsten bronze-type structure. Mater. Res. Bull. 3, 831–842 (1968)

Hellwege, K.-H., Hellwege, A. M., Mitsui, T. & Nomura, S. (eds) Numerical Data and Functional Relationships in Science and Technology, New Series Group 3: Crystal and Solid State Physics, Vol. 16, Ferroelectrics and Related Substances Subvol. a, Oxides (Springer, Berlin, 1981)

Mitsui, T. & Nakamura, E. (eds) Numerical Data and Functional Relationships in Science and Technology, New Series Group 3: Crystal and Solid State Physics, Vol. 28, Suppl. and Extension to Vol. 16, Ferroelectrics and Related Substances Subvol. a, Oxides (Springer, Berlin, 1990)

Takenaka, T. & Nagata, H. Program Summary and Extended Abstract of the 11th US-Japan Seminar on Dielectric and Piezoelectric Ceramics 237–244 (US-Japan seminar committee, Sapporo, Hokkaido, Japan, 2003)

Jaffe, B., Roth, R. S. & Marzullo, S. Properties of piezoelectric ceramics in the solid-solution series lead titanate zirconate-lead oxide: tin oxide and lead titanate-lead hafnate. J. Res. Natl Bur. Stand. 55, 239–254 (1955)

Zhang, S. J., Randall, C. A. & Shrout, T. R. High Curie temperature piezocrystals in the BiScO3-PbTiO3 perovskite system. Appl. Phys. Lett. 83, 3150–3152 (2003)

Jaffe, B., Cook, W. R. & Jaffe, H. Piezoelectric Ceramics (Academic, New York, 1971)

Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992)

Lotgering, F. K. Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures — I. J. Inorg. Nucl. Chem. 9, 113–123 (1959)

Takenaka, T. & Sakata, K. Grain orientation and electrical properties of hot-forged Bi4Ti3O12 ceramics. Jpn. J. Appl. Phys. 19, 31–39 (1980)

Kimura, T., Yoshimoto, T., Iida, N., Fujita, Y. & Yamaguchi, T. Mechanism of grain orientation during hot-pressing of bismuth titanate. J. Am. Ceram. Soc. 72, 85–89 (1989)

Watanabe, H., Kimura, T. & Yamaguchi, T. Sintering of platelike bismuth titanate powder compacts with preferred orientation. J. Am. Ceram. Soc. 74, 139–147 (1991)

Brahmaroutu, B., Messing, G. L., Trolier-Mckinstry, S. & Selvaraj, U. in Proc. 10th IEEE Int. Symp. on Applications of Ferroelectrics Vol. 2 (eds Kulwicki, B., Amin, A. & Safari, A.) 883–886 (Institute of Electrical and Electronic Engineers (IEEE), Piscataway, NJ, 1996)

Horn, J. A., Zhang, S. C., Selvaraj, U., Messing, G. L. & Trolier-McKinstry, S. Templated grain growth of textured bismuth titanate. J. Am. Ceram. Soc. 82, 921–926 (1999)

Tani, T. Crystalline-oriented bulk ceramics with a perovskite-type structure. J. Korean Phys. Soc. 32(Suppl. Iss.), S1217–S1220 (1998)

Takeuchi, T., Tani, T. & Saito, Y. Piezoelectric properties of bismuth layer-structured ferroelectric ceramics with a preferred orientation processed by the reactive templated grain growth method. Jpn. J. Appl. Phys. 38, 5553–5556 (1999)

Sugawara, T., Shimizu, M., Kimura, T., Takatori, K. & Tani, T. Fabrication of grain oriented barium titanate. Ceram. Trans. 136, 389–406 (2003)

Saito, Y. Measurement of complex piezoelectric d33 constant in ferroelectric ceramics under high electric field driving. Jpn. J. Appl. Phys. 34, 5313–5319 (1995)

Saito, Y. Measurement system for electric field-induced strain by use of displacement magnification technique. Jpn. J. Appl. Phys. 35, 5168–5173 (1996)

Saito, Y. Hysteresis curve of X-ray diffraction peak intensity in lead zirconate titanate ceramics. Jpn. J. Appl. Phys. 36, 5963–5969 (1997)