Determination of electrical and optical behaviors of carboxymethyl cellulose/graphene nanocomposites

Ömer Bahadır Mergen1,2, Ertan Arda3
1Department of Medical Imaging Techniques, Dokuz Eylul University, Izmir, Turkey
2Ömer Bahadır Mergen, Department of Medical Imaging Techniques, Dokuz Eylül University, Izmir, Turkey
3Department of Physics, Faculty of Science, Trakya University, Edirne, Turkey

Tóm tắt

Carboxymethyl cellulose (CMC)/graphene nanoplatelet (GnP) nanocomposite films containing different volume fractions (0.00, 0.73, 1.46, 2.20, 2.94, and 3.68) were prepared by ultrasonication assisted solution casting method. The effect of GnPs on structural, electrical, optical properties, and dispersion parameters of the nanocomposite have been investigated by a fourier transform infrared (FTIR), scanning electron microscope (SEM), two-point probe resistivity measurement, UV–Vis absorbance, and reflectance spectroscopy. The direct (Ed) and indirect (Ei) optical band gap energies of nanocomposites were determined using Tauc and absorbance spectrum fitting (ASF) methods. The results demonstrated that the optical band gap energies could be adjusted by altering the GnP volume fraction. Additionally, it was found that the outcomes obtained through the Tauc and ASF methods were very close to each other. The electrical conductivity (σ), Urbach energy (Eu), refractive index (n), dispersion energy (Edo), optical conductivity (σopt), and optical dielectric constant (ε) of CMC/GnP nanocomposite were found to increase with increasing GnP volume fraction (V). The improvements in structural, electrical, optical, dispersion parameters, and optical dielectric properties of these nanocomposites make them a potential candidate for many industrial applications.

Tài liệu tham khảo

M.L. Saladino, M. Markowska, C. Carmone, P. Cancemi, R. Alduina, A. Presentato, R. Scaffaro, D. Biały, M. Hasiak, D. Hreniak, M. Wawrzynska, Graphene oxide carboxymethylcellulose nanocomposite for dressing materials. Materials. 13(8), 1980 (2020). https://doi.org/10.3390/ma13081980

Md.S. Rahman, Md.S. Hasan, A.S. Nitai, S. Nam, A.K. Karmakar, Md.S. Ahsan, M.J.A. Shiddiky, M.B. Ahmed, Recent developments of carboxymethyl cellulose. Polymers 13(8), 1345 (2021). https://doi.org/10.3390/polym13081345

Y.R. Son, S.J. Park, Green preparation and characterization of graphene oxide/carbon nanotubes-loaded carboxymethyl cellulose nanocomposites. Sci. Rep. 8, 17601 (2018). https://doi.org/10.1038/s41598-018-35984-2

H.M. Alghamdi, A. Rajeh, Synthesis of CoFe2O4/MWCNTs Nanohybrid and its Effect on the optical, thermal, and conductivity of PVA/CMC composite as an application in electrochemical devices. J Inorg. Organomet. Polym. 32, 1935–1949 (2022). https://doi.org/10.1007/s10904-022-02322-z

S. Nasibi, H.N. Khoramabadi, M. Arefian, M. Hojjati, I. Tajzad, A. Mokhtarzade, M. Mazhar, A. Jamavari, A review of polyvinyl alcohol/carboxymethyl cellulose (PVA/CMC) composites for various applications. J. compos. Compd. 2(3), 69–76 (2020). https://doi.org/10.29252/jcc.2.2.2

M. El Achaby, N. El Miri, A. Snik, M. Zahouily, K. Abdelouahdi, A. Fihri, A. Barakat, A. Solhy, Mechanically strong nanocomposite films based on highly filled carboxymethyl cellulose with graphene oxide. J Appl Polym Sci. 133, 42356 (2016). https://doi.org/10.1002/app.42356

S.K. Shetty, G.S. Ismayil, Enhancement of electrical and optical properties of sodium bromide doped carboxymethyl cellulose biopolymer electrolyte films. J. Macromol. Sci. B. 59(4), 235–247 (2020). https://doi.org/10.1080/00222348.2020.1711585

Ö.B. Mergen, E. Arda, G. Akin Evingür, Electrical, optical and mechanical properties of chitosan biocomposites. J. Compos. Mater. 54(11), 1497–1510 (2020). https://doi.org/10.1177/0021998319883916

Ö.B. Mergen, Effect of MWCNT addition on the optical band gap of PVA/CS transient biocomposites. J. Compos. Mater. 55(29), 4347–4359 (2021). https://doi.org/10.1177/00219983211037050

S.A. Sbeih, A.M. Zihlif, Optical and electrical properties of kaolinite/polystyrene composite. J. Phys. D. Appl. Phys. 42, 145405 (2009). https://doi.org/10.1088/0022-3727/42/14/145405

Ö.B. Mergen, E. Arda, S. Kara, Ö. Pekcan, Effects of GNP addition on optical properties and band gap energies of PMMA films. Polym. Compos. 40, 1862–1869 (2019). https://doi.org/10.1002/pc.24948

Ö.B. Mergen, E. Arda, Electrical, optical and dielectric properties of polyvinylpyrrolidone/graphene nanoplatelet nanocomposites. Opt. Mater. 139, 113823 (2023). https://doi.org/10.1016/j.optmat.2023.113823

S.K. Panda, S. Chakrabarti, B. Satpati, P.V. Satyam, S. Chaudhuri, Optical and microstructural characterization of CdS–ZnO nanocomposite thin films prepared by sol–gel technique. J. Phys. D Appl Phys. 37, 628 (2004). https://doi.org/10.1088/0022-3727/37/4/014

A.M. Hussein, E.M.A. Dannoun, S.B. Aziz, M.A. Brza, R.T. Abdulwahid, S.A. Hussen, S. Rostam, D.M.T. Mustafa, D.S. Muhammad, Steps toward the band gap identification in polystyrene based solid polymer nanocomposites integrated with tin titanate nanoparticles. Polymers 12(10), 2320 (2020). https://doi.org/10.3390/polym12102320

K. Asai, G.I. Konishi, K. Sumi, K. Mizuno, Synthesis of silyl-functionalized oligothiophene-based polymers with bright blue light-emission and high refractive index. J. Organomet. Chem. 696(6), 1236–1243 (2011). https://doi.org/10.1016/j.jorganchem.2010.11.013

F.F. Muhammad, K. Sulaiman, Photovoltaic performance of organic solar cells based on DH6T/PCBM thin film active layers. Thin Solid Films 519(15), 5230–5233 (2011). https://doi.org/10.1016/j.tsf.2011.01.165

G. Shimoga, S.-Y. Kim, High-k polymer nanocomposite materials for technological applications. Appl. Sci. 10(12), 4249 (2020). https://doi.org/10.3390/app10124249

A.A. Menazea, N.S. Awwad, H.A. Ibrahium, M.K. Ahmed, Casted polymeric blends of carboxymethyl cellulose/polyvinyl alcohol doped with gold nanoparticles via pulsed laser ablation technique; morphological features, optical and electrical investigation. Radiat. Phys. Chem. 177, 109155 (2020). https://doi.org/10.1016/j.radphyschem.2020.109155

E.M. Abdallah, T.F. Qahtan, E.M. Abdelrazek, G.M. Asnag, M.A. Morsi, Enhanced the structural, optical, electrical and magnetic properties of PEO/CMC blend filled with cupper nanoparticles for energy storage and magneto-optical devices. Opt mat. 134, 113092 (2022). https://doi.org/10.1016/j.optmat.2022.113092

T. Batakliev, I. Petrova-Doycheva, V. Angelov, V. Georgiev, E. Ivanov, R. Kotsilkova, M. Casa, C. Cirillo, R. Adami, M. Sarno, P. Ciambelli, Effects of graphene nanoplatelets and multiwall carbon nanotubes on the structure and mechanical properties of poly(lactic acid) composites: a comparative study. Appl Sci. 9(3), 469 (2019). https://doi.org/10.3390/app9030469

Ö.B. Mergen, E. Arda, G. Akin Evingür, Electrical, mechanical, and optical changes in MWCNT-doped PMMA composite films. J. Compos. Mater. 54(18), 2449–2459 (2020). https://doi.org/10.1177/0021998319898507

S. Demirci, S.D. Sutekin, N. Sahiner, Polymeric composites based on carboxymethyl cellulose cryogel and conductive polymers: synthesis and characterization. J. Compos. Sci. 4(2), 33 (2020). https://doi.org/10.3390/jcs4020033

R. Badry, H.A. Ezzat, S. El-Khodary, M. Morsy, H. Elhaes, N. Nada, M. Ibrahim, Spectroscopic and thermal analyses for the effect of acetic acid on the plasticized sodium carboxymethyl cellulose. J. Mol. Struct. 1224, 129013 (2021). https://doi.org/10.1016/j.molstruc.2020.129013

A.A. Al-Muntaser, R.A. Pashameah, K. Sharma, E. Alzahrani, A.E. Tarabiah, Reinforcement of structural, optical, electrical, and dielectric characteristics of CMC/PVA based on GNP/ZnO hybrid nanofiller: Nanocomposites materials for energy-storage applications. Int. J. Energy Res. 46(15), 23984–23995 (2022). https://doi.org/10.1002/er.8695

Ö.B. Mergen, E. Arda, G. Akin Evingür, Electrical, optical and mechanical properties of PS/GNP composite films. Ph. Transit. 91(8), 887–900 (2018). https://doi.org/10.1080/01411594.2018.1506879

A.M. El-naggar, Z.K. Heiba, A.M. Kamal, K.E. Alzahrani, O.H. Abd-Elkader, M.B. Mohamed, Impact of natural melanin doping on the structural, optical and dielectric characteristics of the PVP/CMC blend. J. Taibah. Univ. Med. Sci. 17(1), 2190731 (2023). https://doi.org/10.1080/16583655.2023.2190731

P. Makuła, M. Pacia, W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9(23), 6814–6817 (2018). https://doi.org/10.1021/acs.jpclett.8b02892

Y.S. Rammah, A.A. Ali, R. El-Mallawany, A.M. Abdelghany, Optical properties of bismuth borotellurite glasses doped with NdCl3. J. Mol. Struct. 1175, 504–511 (2019). https://doi.org/10.1016/j.molstruc.2018.07.071

N.X. Sang, N.M. Quan, N.H. Tho, N.T. Tuan, T.T. Tung, Mechanism of enhanced photocatalytic activity of Cr-doped ZnO nanoparticles revealed by photoluminescence emission and electron spin resonance. Semicond. Sci. Technol. 34, 025013 (2019). https://doi.org/10.1088/1361-6641/aaf820

L. Harynski, A. Olejnik, K. Grochowska, K. Siuzdak, A facile method for Tauc exponent and corresponding electronic transitions determination in semiconductors directly from UV–Vis spectroscopy data. Opt. Mater. 127, 112205 (2022). https://doi.org/10.1016/j.optmat.2022.112205

M. Aftab, M.Z. Butt, D. Ali, F. Bashir, T.M. Khan, Optical and electrical properties of NiO and Cu-doped NiO thin films synthesized by spray pyrolysis. Opt. Mater. 119, 111369 (2021). https://doi.org/10.1016/j.optmat.2021.111369

D. Souri, K. Shomalian, Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60–x) V2O5–40TeO2–xSb2O3 glasses. J. Non Cryst. Solids. 355(31–33), 1597–1601 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.06.003

R. Badry, M.M. El-Nahass, N. Nada, H. Elhaes, M.A. Ibrahim, Structural and UV-blocking properties of carboxymethyl cellulose sodium/CuO nanocomposite films. Sci Rep. 13, 1123 (2023). https://doi.org/10.1038/s41598-023-28032-1

M.M. Abutalib, A. Rajeh, Boosting optical and electrical characteristics of polyvinyl alcohol/carboxymethyl cellulose nanocomposites by GNPs/MWCNTs fillers as an application in energy storage devices. Int J Energy Res. 46(5), 6216–6224 (2022). https://doi.org/10.1002/er.7559

Y. Feng, S. Lin, S. Huang, S. Shrestha, G. Conibeer, Can Tauc plot extrapolation be used for direct-band-gap semiconductor nanocrystals. J. Appl. Phys. 117, 125701 (2015). https://doi.org/10.1063/1.4916090

A.M. El Sayed, A.D.M. Mohamad, Synthesis, structural, thermal, optical and dielectric properties of chitosan biopolymer; influence of PVP and α-Fe2O3 Nanorods. J Polym Res. 25, 175 (2018). https://doi.org/10.1007/s10965-018-1571-x

F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

L.M. Al-Harbi, Q.A. Alsulami, M.O. Farea, A. Rajeh, Tuning optical, dielectric, and electrical properties of polyethylene oxide/Carboxymethyl cellulose doped with mixed metal oxide nanoparticles for flexible electronic devices. J. Mol. Struct. 1272, 134244 (2023). https://doi.org/10.1016/j.molstruc.2022.134244

P. Dhatarwal, R.J. Sengwa, Nanofiller controllable optical parameters and improved thermal properties of (PVP/PEO)/Al2O3 and (PVP/PEO)/SiO2 nanocomposites. Optik. 233, 166594 (2021). https://doi.org/10.1016/j.ijleo.2021.166594

R.M. Ahmed, Optical study on poly(methyl methacrylate)/poly(vinyl acetate) blends. Int. J. Photoenergy. 2009, 150389 (2009). https://doi.org/10.1155/2009/150389

K. Dincer, B. Waisi, G. Önal, N. Tuğluoğlu, J. McCutcheon, Ö.F. Yüksel, Investigation of optical and dispersion parameters of electrospinning grown activated carbon nanofiber (ACNF) layer. Synth. Met. 237, 16–22 (2018). https://doi.org/10.1016/j.synthmet.2018.01.008

S.H. Wemple, M. DiDomenico, Optical dispersion and the structure of solids. Phys. Rev. Lett. 23, 1156 (1969). https://doi.org/10.1103/PhysRevLett.23.1156

T.A. Hameed, F. Mohamed, G. Turky, A. Salama, Carboxymethylcellulose/polyvinylpyrrolidone filled with Al-doped ZnO nanoparticles as a promising film for optoelectronic applications. Opt. Mat. 134, 113097 (2022). https://doi.org/10.1016/j.optmat.2022.113097

G. Veena, B. Lobo, Dispersive parameters of oxidized PVA-PVP blend films. Turk. J. Phys. 43(4), 337–354 (2019). https://doi.org/10.3906/fiz-1808-21

G. Soni, R.K. Jangir, Effect of temperature nano graphite doped polymethylmethacrylate (PMMA) composite flexible thin films prepared by solution casting: synthesis, optical and electrical properties. Optik. 226, 165915 (2021). https://doi.org/10.1016/j.ijleo.2020.165915

F. Usman, J.O. Dennis, A.Y. Ahmed, K.C. Seong, Y.W. Fen, A.R. Sadrolhosseini, F. Meriaudeau, P. Kumar, O.B. Ayodele, Structural characterization and optical constants of p-toluene sulfonic acid doped polyaniline and its composites of chitosan and reduced graphene-oxide. J Mater. Res. Technol. 9(2), 1468–1476 (2020). https://doi.org/10.1016/j.jmrt.2019.11.072