Determination of Optical Band Gap Energies of CS/MWCNT Bio-nanocomposites by Tauc and ASF Methods

Synthetic Metals - Tập 269 - Trang 116539 - 2020
Ömer Bahadır Mergen1, Ertan Arda2
1Department of Medical Imaging Techniques, Dokuz Eylul University, Izmir, Turkey
2Department of Physics, Faculty of Science, Trakya University, Edirne, Turkey

Tài liệu tham khảo

Dolgonos, 2016, Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method, J. Solid State Chem., 240, 43, 10.1016/j.jssc.2016.05.010 Jarosiński, 2019, Inverse logarithmic derivative method for determining the energy gap and the type of electron transitions as an alternative to the Tauc method, Opt. Mater., 88, 667, 10.1016/j.optmat.2018.12.041 Sáenz-Trevizo, 2016, Optical Band Gap Estimation of ZnO Nanorods, Mater. Res., 19, 33, 10.1590/1980-5373-mr-2015-0612 Elsayed, 2015, Investigation of the Effects of Fullerene addition and Plasma Exposure on Optical Properties of Polystyrene Films, IOSR-JAP, 7, 64 Mergen, 2020, Electrical, optical and mechanical properties of chitosan biocomposites, J. Compos. Mater., 54, 1497, 10.1177/0021998319883916 Shahzad, 2015, Mechanical Properties of Eco-friendly Polymer Nanocomposites, vol. 75, 527 Dash, 2011, Chitosan—A versatile semi-synthetic polymer in biomedical applications, Prog. Polym. Sci., 36, 981, 10.1016/j.progpolymsci.2011.02.001 Ozkan, 2019, Investigation of rGO and chitosan effects on optical and electrical properties of the conductive polymers for advanced applications, Electrochim. Acta., 295, 1044, 10.1016/j.electacta.2018.11.032 El-Sherbiny, 2015, Eco-friendly Electrospun Polymeric Nanofibers-Based Nanocomposites for Wound Healing and Tissue Engineering, vol. 75, 399 Barra, 2019, Eco-friendly preparation of electrically conductive chitosan – reduced graphene oxide flexible bionanocomposites for food packaging and biological applications, Compos. Sci. Technol., 173, 53, 10.1016/j.compscitech.2019.01.027 Yenier, 2016, Manufacturing and mechanical, thermal and electrical characterization of graphene loaded chitosan composites, Compos. B. Eng., 98, 281, 10.1016/j.compositesb.2016.04.072 Afzal, 2016, Perspectives of Polystyrene Composite with Fullerene, Carbon Black, Graphene, and Carbon Nanotube: A Review, Polym. Plast. Technol. Eng., 55, 1988, 10.1080/03602559.2016.1185632 Bikiaris, 2010, Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites, Materials., 3, 2884, 10.3390/ma3042884 Nakagawa, 2011, Freeze-dried solid foams prepared from carbon nanotube aqueous suspension: Application to gas diffusion layers of a proton exchange membrane fuel cell, Chem. Eng. Process., 50, 22, 10.1016/j.cep.2010.10.010 Wang, 2018, Proton exchange membrane based on chitosan and solvent-free carbon nanotube fluids for fuel cells applications, Carbohydr. Polym., 186, 200, 10.1016/j.carbpol.2018.01.032 Marroquin, 2013, Chitosan nanocomposite films: Enhanced electrical conductivity, thermal stability, and mechanical properties, Carbohydr. Polym., 92, 1783, 10.1016/j.carbpol.2012.11.042 Choi, 2019, The electrochemical glucose sensing based on the chitosan-carbon nanotube hybrid, Biochem. Eng. J., 144, 227, 10.1016/j.bej.2018.10.021 Venkatesan, 2012, Preparation and characterization of chitosan–carbon nanotube scaffolds for bone tissue engineering, Int. J. Biol. Macromol., 50, 393, 10.1016/j.ijbiomac.2011.12.032 Türk, 2018, 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering, Mater. Sci. Eng. C., 92, 757, 10.1016/j.msec.2018.07.020 Arda, 2018, Electrical and optical percolations in PMMA/GNP composite films, Phase Transit., 91, 546, 10.1080/01411594.2018.1432053 Zainudin, 2017, Structural, optical and sensing properties of ionophore doped graphene based bionanocomposite thin film, Optik, 144, 308, 10.1016/j.ijleo.2017.07.001 Kurt, 2010, A study on the optical properties of three‐armed polystyrene and poly(styrene‐b‐isobutyl methacrylate), Polym. Eng. Sci., 50, 268, 10.1002/pen.21530 Al-Ani, 1993, Determination of the optical gap of amorphous materials, Int. J. Electronics, 75, 1153, 10.1080/00207219308907191 Abdullah, 2017, Effect of silicon powder on the optical characterization of Poly(methyl methacrylate) polymer composites, J. Mater. Sci: Mater. Electron, 28, 4513 Mergen, 2019, Effects of GNP Addition on Optical Properties and Band Gap Energies of PMMA Films, Polym. Compos., 40, 1862, 10.1002/pc.24948 Rabee, 2016, Study of Optical Properties of (PMMA-CuO) Nanocomposites, Int. J. Sci. Res., 5, 2319 Rao, 2012, Optical properties of alkaline earth borate glasses, Int. J. Eng. Sci. Technol., 4, 25, 10.4314/ijest.v4i4.3 Chopra, 1990, Electrical, optical and structural properties of amorphous V2O5TeO2 blown films, J. Non-Cryst. Solids, 126, 194, 10.1016/0022-3093(90)90819-8 Ghobadi, 2013, Band gap determination using absorption spectrum fitting procedure, Int. Nano Lett., 3, 10.1186/2228-5326-3-2 Rammah, 2019, Modifications of Structural, Optical, and Carbonaceous Clusters in Neutron Irradiated C12H18O7 Polymeric Detector, J. Rad. Nucl. Appl., 4, 91 Baishya, 2018, Graphene-mediated band gap engineering of WO3 Nanoparticle and a relook at Tauc equation for band gap evaluation, Appl. Phys. A, 124, 704, 10.1007/s00339-018-2097-0 Panda, 2004, Optical and microstructural characterization of CdS–ZnO nanocomposite thin films prepared by sol–gel technique, J. Phys. D: Appl. Phys., 37, 628, 10.1088/0022-3727/37/4/014 Dincer, 2018, Investigation of optical and dispersion parameters of electrospinning grown activated carbon nanofiber (ACNF) layer, Synth. Met., 237, 16, 10.1016/j.synthmet.2018.01.008 Anas, 2019, Optical properties of chitosan/hydroxyl-functionalized graphene quantum dots thin film for potential optical detection of ferric (III) ion, Opt. Laser. Technol., 120, 10.1016/j.optlastec.2019.105724 Tauc, 1974 Mott, 1979 Souri, 2009, Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60-x) V2O5–40TeO2–xSb2O3 glasses, J. Non-Cryst. Solids, 355, 1597, 10.1016/j.jnoncrysol.2009.06.003 Patel, 2011, Effect of TiO2 on Optical Properties of PMMA: An Optical Characterization, AMR, 383–390, 3249, 10.4028/www.scientific.net/AMR.383-390.3249 Ziman, 1979 Aziz, 2016, Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices, J. Electron. Mater., 45, 736, 10.1007/s11664-015-4191-9 Urbach, 1953, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev., 92, 1324, 10.1103/PhysRev.92.1324 Tigau, 2006, Structural, optical and electrical properties of Sb2O3 thin films with different thickness, J. Optoelectron. Adv. M., 8, 37 Dimitrov, 1996, Linear and nonlinear optical properties of simple oxides. II, J. Appl. Phys., 79, 1741, 10.1063/1.360963 Abdelghany, 2018, Role of Silica Nanoparticles on Structural, Optical and Morphological Properties of Poly(Vinyl Chloride-co-Vinyl Acetate-co-2- Hydroxypropyl Acrylate) Copolymer, Silicon, 10, 519, 10.1007/s12633-016-9483-z