Determination of Optical Band Gap Energies of CS/MWCNT Bio-nanocomposites by Tauc and ASF Methods
Tài liệu tham khảo
Dolgonos, 2016, Direct optical band gap measurement in polycrystalline semiconductors: A critical look at the Tauc method, J. Solid State Chem., 240, 43, 10.1016/j.jssc.2016.05.010
Jarosiński, 2019, Inverse logarithmic derivative method for determining the energy gap and the type of electron transitions as an alternative to the Tauc method, Opt. Mater., 88, 667, 10.1016/j.optmat.2018.12.041
Sáenz-Trevizo, 2016, Optical Band Gap Estimation of ZnO Nanorods, Mater. Res., 19, 33, 10.1590/1980-5373-mr-2015-0612
Elsayed, 2015, Investigation of the Effects of Fullerene addition and Plasma Exposure on Optical Properties of Polystyrene Films, IOSR-JAP, 7, 64
Mergen, 2020, Electrical, optical and mechanical properties of chitosan biocomposites, J. Compos. Mater., 54, 1497, 10.1177/0021998319883916
Shahzad, 2015, Mechanical Properties of Eco-friendly Polymer Nanocomposites, vol. 75, 527
Dash, 2011, Chitosan—A versatile semi-synthetic polymer in biomedical applications, Prog. Polym. Sci., 36, 981, 10.1016/j.progpolymsci.2011.02.001
Ozkan, 2019, Investigation of rGO and chitosan effects on optical and electrical properties of the conductive polymers for advanced applications, Electrochim. Acta., 295, 1044, 10.1016/j.electacta.2018.11.032
El-Sherbiny, 2015, Eco-friendly Electrospun Polymeric Nanofibers-Based Nanocomposites for Wound Healing and Tissue Engineering, vol. 75, 399
Barra, 2019, Eco-friendly preparation of electrically conductive chitosan – reduced graphene oxide flexible bionanocomposites for food packaging and biological applications, Compos. Sci. Technol., 173, 53, 10.1016/j.compscitech.2019.01.027
Yenier, 2016, Manufacturing and mechanical, thermal and electrical characterization of graphene loaded chitosan composites, Compos. B. Eng., 98, 281, 10.1016/j.compositesb.2016.04.072
Afzal, 2016, Perspectives of Polystyrene Composite with Fullerene, Carbon Black, Graphene, and Carbon Nanotube: A Review, Polym. Plast. Technol. Eng., 55, 1988, 10.1080/03602559.2016.1185632
Bikiaris, 2010, Microstructure and Properties of Polypropylene/Carbon Nanotube Nanocomposites, Materials., 3, 2884, 10.3390/ma3042884
Nakagawa, 2011, Freeze-dried solid foams prepared from carbon nanotube aqueous suspension: Application to gas diffusion layers of a proton exchange membrane fuel cell, Chem. Eng. Process., 50, 22, 10.1016/j.cep.2010.10.010
Wang, 2018, Proton exchange membrane based on chitosan and solvent-free carbon nanotube fluids for fuel cells applications, Carbohydr. Polym., 186, 200, 10.1016/j.carbpol.2018.01.032
Marroquin, 2013, Chitosan nanocomposite films: Enhanced electrical conductivity, thermal stability, and mechanical properties, Carbohydr. Polym., 92, 1783, 10.1016/j.carbpol.2012.11.042
Choi, 2019, The electrochemical glucose sensing based on the chitosan-carbon nanotube hybrid, Biochem. Eng. J., 144, 227, 10.1016/j.bej.2018.10.021
Venkatesan, 2012, Preparation and characterization of chitosan–carbon nanotube scaffolds for bone tissue engineering, Int. J. Biol. Macromol., 50, 393, 10.1016/j.ijbiomac.2011.12.032
Türk, 2018, 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering, Mater. Sci. Eng. C., 92, 757, 10.1016/j.msec.2018.07.020
Arda, 2018, Electrical and optical percolations in PMMA/GNP composite films, Phase Transit., 91, 546, 10.1080/01411594.2018.1432053
Zainudin, 2017, Structural, optical and sensing properties of ionophore doped graphene based bionanocomposite thin film, Optik, 144, 308, 10.1016/j.ijleo.2017.07.001
Kurt, 2010, A study on the optical properties of three‐armed polystyrene and poly(styrene‐b‐isobutyl methacrylate), Polym. Eng. Sci., 50, 268, 10.1002/pen.21530
Al-Ani, 1993, Determination of the optical gap of amorphous materials, Int. J. Electronics, 75, 1153, 10.1080/00207219308907191
Abdullah, 2017, Effect of silicon powder on the optical characterization of Poly(methyl methacrylate) polymer composites, J. Mater. Sci: Mater. Electron, 28, 4513
Mergen, 2019, Effects of GNP Addition on Optical Properties and Band Gap Energies of PMMA Films, Polym. Compos., 40, 1862, 10.1002/pc.24948
Rabee, 2016, Study of Optical Properties of (PMMA-CuO) Nanocomposites, Int. J. Sci. Res., 5, 2319
Rao, 2012, Optical properties of alkaline earth borate glasses, Int. J. Eng. Sci. Technol., 4, 25, 10.4314/ijest.v4i4.3
Chopra, 1990, Electrical, optical and structural properties of amorphous V2O5TeO2 blown films, J. Non-Cryst. Solids, 126, 194, 10.1016/0022-3093(90)90819-8
Ghobadi, 2013, Band gap determination using absorption spectrum fitting procedure, Int. Nano Lett., 3, 10.1186/2228-5326-3-2
Rammah, 2019, Modifications of Structural, Optical, and Carbonaceous Clusters in Neutron Irradiated C12H18O7 Polymeric Detector, J. Rad. Nucl. Appl., 4, 91
Baishya, 2018, Graphene-mediated band gap engineering of WO3 Nanoparticle and a relook at Tauc equation for band gap evaluation, Appl. Phys. A, 124, 704, 10.1007/s00339-018-2097-0
Panda, 2004, Optical and microstructural characterization of CdS–ZnO nanocomposite thin films prepared by sol–gel technique, J. Phys. D: Appl. Phys., 37, 628, 10.1088/0022-3727/37/4/014
Dincer, 2018, Investigation of optical and dispersion parameters of electrospinning grown activated carbon nanofiber (ACNF) layer, Synth. Met., 237, 16, 10.1016/j.synthmet.2018.01.008
Anas, 2019, Optical properties of chitosan/hydroxyl-functionalized graphene quantum dots thin film for potential optical detection of ferric (III) ion, Opt. Laser. Technol., 120, 10.1016/j.optlastec.2019.105724
Tauc, 1974
Mott, 1979
Souri, 2009, Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60-x) V2O5–40TeO2–xSb2O3 glasses, J. Non-Cryst. Solids, 355, 1597, 10.1016/j.jnoncrysol.2009.06.003
Patel, 2011, Effect of TiO2 on Optical Properties of PMMA: An Optical Characterization, AMR, 383–390, 3249, 10.4028/www.scientific.net/AMR.383-390.3249
Ziman, 1979
Aziz, 2016, Modifying Poly(Vinyl Alcohol) (PVA) from Insulator to Small-Bandgap Polymer: A Novel Approach for Organic Solar Cells and Optoelectronic Devices, J. Electron. Mater., 45, 736, 10.1007/s11664-015-4191-9
Urbach, 1953, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids, Phys. Rev., 92, 1324, 10.1103/PhysRev.92.1324
Tigau, 2006, Structural, optical and electrical properties of Sb2O3 thin films with different thickness, J. Optoelectron. Adv. M., 8, 37
Dimitrov, 1996, Linear and nonlinear optical properties of simple oxides. II, J. Appl. Phys., 79, 1741, 10.1063/1.360963
Abdelghany, 2018, Role of Silica Nanoparticles on Structural, Optical and Morphological Properties of Poly(Vinyl Chloride-co-Vinyl Acetate-co-2- Hydroxypropyl Acrylate) Copolymer, Silicon, 10, 519, 10.1007/s12633-016-9483-z