Graphene-mediated band gap engineering of WO3 nanoparticle and a relook at Tauc equation for band gap evaluation

Applied Physics A Solids and Surfaces - Tập 124 - Trang 1-6 - 2018
Kaushik Baishya1, Joydwip S. Ray1, Pankaj Dutta2, Partha P. Das3, Shyamal K. Das1
1Department of Physics, Tezpur University, Assam, India
2Department of Physics, Dibrugarh University, Assam, India
3Department of Physics, National Institute of Technology Karnataka, Surathkal, India

Tóm tắt

Engineering the band gap of semiconductors is often crucial in the quest for developing new and advanced technologies. In this report, the implication of graphene on the band gap optimization of tungsten trioxide (WO3) is discussed. Simple one-step sol–gel process was followed to anchor WO3 nanoparticles in graphene. Graphene induces a redshift in the band gap of WO3. Band gap narrowing of 6.60% is observed for 7 wt% graphene-tethered WO3. Interestingly, a profound difference is observed in estimating the band gap energy values following the usual Tauc equation. Our observation suggests that the differential form of Tauc equation is better suited to determine the band gap energy of inorganic semiconductors than the typical extrapolation method.

Tài liệu tham khảo