A comparative study on the AC/DC conductivity, dielectric and optical properties of polystyrene/graphene nanoplatelets (PS/GNP) and multi-walled carbon nanotube (PS/MWCNT) nanocomposites

Polymer Testing - Tập 90 - Trang 106682 - 2020
Ömer Bahadır Mergen1, Evrim Umut1, Ertan Arda2, Selim Kara2
1Department of Medical Imaging Techniques, Dokuz Eylul University, Izmir, Turkey
2Department of Physics, Faculty of Science, Trakya University, Edirne, Turkey

Tài liệu tham khảo

Jang, 2016, Graphene-based flexible and stretchable electronics, Adv. Mater., 28, 4184, 10.1002/adma.201504245 Huynh, 2018, Electrical property enhancement by controlled percolation structure of carbon black in polymer-based nanocomposites via nanosecond pulsed electric field, Compos. Sci. Technol., 154, 165, 10.1016/j.compscitech.2017.09.019 Chana, 2018, A critical review on multifunctional composites as structural capacitors for energy storage, Compos. Struct., 188, 126, 10.1016/j.compstruct.2017.12.072 Mohana, 2018, Graphene-based materials and their composites: a review on production, applications and product limitations, Compos. B Eng., 142, 200, 10.1016/j.compositesb.2018.01.013 Liu, 2018, Compos. Sci. Technol., 159, 152, 10.1016/j.compscitech.2018.02.041 Zhan, 2017, Conductive polymer nanocomposites: a critical review of modern advanced devices, J. Mater. Chem. C., 5, 1569, 10.1039/C6TC04269D Yu, 2017, Fabrication technologies and sensing applications of graphene-based composite films: advances and challenges, Biosens. Bioelectron., 89, 72, 10.1016/j.bios.2016.01.081 Punetha, 2017, Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene, Prog. Polym. Sci., 67, 1, 10.1016/j.progpolymsci.2016.12.010 Silva, 2018, Graphene‐polymer nanocomposites for biomedical applications, Polym. Adv. Technol., 29, 687, 10.1002/pat.4164 Inzelt, 2017, Recent advances in the field of conducting polymers, J. Solid State Electrochem., 21, 1965, 10.1007/s10008-017-3611-6 Du, 2012, The fabrication properties and uses of graphene/polymer composites, Macromol. Chem. Phys., 213, 1060, 10.1002/macp.201200029 Al-Saleh, 2015, Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites, Synth. Met., 205, 78, 10.1016/j.synthmet.2015.03.032 Maiti, 2014, Low percolation threshold and high electrical conductivity in melt-blended polycarbonate/multiwall carbon nanotube nanocomposites in the presence of poly(ε-caprolactone), Polym. Eng. Sci., 54, 646, 10.1002/pen.23600 Cui, 2018, Facile fabrication of highly conductive polystyrene/nanocarbon composites with robust interconnected network via electrostatic attraction strategy, J. Mater. Chem. C., 6, 550, 10.1039/C7TC04752E Bagotia, 2017, Studies on toughened polycarbonate/multiwalled carbon nanotubes nanocomposites, Compos. B Eng., 124, 101, 10.1016/j.compositesb.2017.05.037 Milani, 2013, Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties, Compos. Sci. Technol., 84, 1, 10.1016/j.compscitech.2013.05.001 Bressanin, 2018, Electrically conductive nanocomposites of PMMA and carbon nanotubes prepared by in situ polymerization under probe sonication, Chem. Pap., 72, 1799, 10.1007/s11696-018-0443-5 Lai, 2018, Flexible poly(vinyl alcohol)/reduced graphene oxide coated carbon composites for electromagnetic interference shielding, ACS Appl. Nano Mater., 1, 5854, 10.1021/acsanm.8b01499 Kaseem, 2016, Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review, Eur. Polym. J., 79, 36, 10.1016/j.eurpolymj.2016.04.011 Ma, 2014, Perspectives of carbon nanotubes/polymer nanocomposites for wind blade materials, Renew. Sustain. Energy Rev., 30, 651, 10.1016/j.rser.2013.11.008 Mallakpour, 2018, Preparation of polystyrene/MWCNT‐Valine composites: Investigation of optical, morphological, thermal, and electrical conductivity properties, Polym. Adv. Technol., 29, 1182, 10.1002/pat.4229 Zhao, 2018, Fabrication of pristine graphene-based conductive polystyrene composites towards high performance and light-weight, Compos. Sci. Technol., 159, 232, 10.1016/j.compscitech.2018.02.013 Zeimaran, 2015, Polystyrene carbon nanotube nanocomposites Zhang, 2017, Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: high dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene, Eur. Polym. J., 94, 196, 10.1016/j.eurpolymj.2017.07.008 Han, 2019, Multiwalled carbon nanotubes encapsulated polystyrene: a facile one-step synthesis, electrical and thermal properties, J. Mater. Sci., 54, 6227, 10.1007/s10853-018-03267-w Mergen, 2020, Electrical, optical, and mechanical percolations of multi-walled carbon nanotube and carbon mesoporous-doped polystyrene composites, J. Compos. Mater., 54, 31, 10.1177/0021998319859053 Arda, 2018, Electrical, optical and mechanical properties of PS/GNP composite films, Phase Transitions, 91, 887, 10.1080/01411594.2018.1506879 Wang, 2016, Ultralow electrical percolation in graphene aerogel/epoxy composites, Chem. Mater., 28, 6731, 10.1021/acs.chemmater.6b03206 Basua, 2012, Recent developments on graphene and graphene oxide based solid state gas sensors, Sensor. Actuator. B Chem., 173, 1, 10.1016/j.snb.2012.07.092 Bhattacharya, 2016, Polymer nanocomposites—a comparison between carbon nanotubes graphene and clay as nanofillers, Materials, 9, 262, 10.3390/ma9040262 Nadiv, 2018, Performance of nano-carbon loaded polymer composites: dimensionality matters, Carbon, 126, 410, 10.1016/j.carbon.2017.10.039 Afzal, 2016, Perspectives of polystyrene composite with fullerene carbon black graphene and carbon nanotube: a review, Polym. Plast. Technol. Eng., 55, 1988, 10.1080/03602559.2016.1185632 Huang, 2017, The effect of geometric factor of carbon nanofillers on the electrical conductivity and electromagnetic interference shielding properties of poly(trimethylene terephthalate) composites: a comparative study, J. Mater. Sci., 52, 2560, 10.1007/s10853-016-0549-5 Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0 Suhr, 2007, Fatigue resistance of aligned carbon nanotube arrays under cyclic compression, Nat. Nanotechnol., 2, 417, 10.1038/nnano.2007.186 Evingur, 2011, Gelation, electrical conductivity and elasticity of PAM- MWNT, Mater. Res. Soc. Symp. Proc., 1312, 10.1557/opl.2011.117 Shah, 2015, Progression from graphene and graphene oxide to high performance polymer-based nanocomposite: a review, Polym. Plast. Technol. Eng., 54, 173, 10.1080/03602559.2014.955202 Ma, 2010, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review, Compos. Part A Appl. Sci. Manuf., 41, 1345, 10.1016/j.compositesa.2010.07.003 Zaman, 2012, A facile approach to chemically modified graphene and its polymer nanocomposites, Adv. Funct. Mater., 22, 2735, 10.1002/adfm.201103041 Zaman, 2012, From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites, Nanoscale, 4, 4578, 10.1039/c2nr30837a Marsden, 2018, Electrical percolation in graphene–polymer composites, 2D Mater., 5, 10.1088/2053-1583/aac055 Al-Saleh, 2016, Graphene nanoplatelet–polystyrene nanocomposite: dielectric and charge storage behaviors, J. Electron. Mater., 45, 3532, 10.1007/s11664-016-4505-6 Arda, 2018, Electrical and optical percolations in PMMA/GNP composite films, Phase Transitions, 91, 546, 10.1080/01411594.2018.1432053 Liu, 2018, Constructing a double-percolated conductive network in a carbon nanotube/polymer-based flexible semiconducting composite, Compos. Sci. Technol., 154, 45, 10.1016/j.compscitech.2017.11.003 Stauffer, 1994 Du, 2011, Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure, Carbon, 49, 1094, 10.1016/j.carbon.2010.11.013 Stauffer, 2009, Classical percolation Ayesh, 2013, Electrical, optical, and rheological properties of ozone-treated multiwalled carbon nanotubes–polystyrene nanocomposites, J. Reinforc. Plast. Compos., 32, 359, 10.1177/0731684412470016 Park, 2014, Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites, Appl. Phys. Lett., 104, 10.1063/1.4869026 Zhao, 2014, Electrically conductive graphene-filled polymer composites with well organized three-dimensional microstructure, Mater. Lett., 121, 74, 10.1016/j.matlet.2014.01.100 Tu, 2016, A facile approach for preparation of polystyrene/graphene nanocomposites with ultra-low percolation threshold through an electrostatic assembly process, Compos. Sci. Technol., 134, 49, 10.1016/j.compscitech.2016.08.003 Wu, 2013, Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process, Adv. Funct. Mater., 23, 506, 10.1002/adfm.201201231 Wang, 2015, Electrical percolation and crystallization kinetics of semi-crystalline polystyrene composites filled with graphene nanosheets, Mater. Chem. Phys., 164, 206, 10.1016/j.matchemphys.2015.08.046 Seidel, 2009, A micromechanics model for the electrical conductivity of nanotube-polymer nanocomposites, J. Compos. Mater., 43, 917, 10.1177/0021998308105124 Li, 2007, Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes, Adv. Funct. Mater., 17, 3207, 10.1002/adfm.200700065 Du, 2004, Nanotube networks in polymer nanocomposites: rheology and electrical conductivity, Macromolecules, 37, 9048, 10.1021/ma049164g Arjmand, 2015, Broadband dielectric properties of multiwalled carbon nanotube/polystyrene composites, Polym. Eng. Sci., 55, 173, 10.1002/pen.23881 Deshmukh, 2016, Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application, Eur. Polym. J., 76, 14, 10.1016/j.eurpolymj.2016.01.022 Lu, 2006, Influence of the relaxation of Maxwell-Wagner-Sillars polarization and dc conductivity on the dielectric behaviors of nylon 1010, J. Appl. Phys., 100, 10.1063/1.2336494 Jonscher, 1977, The ‘universal’ dielectric response, Nature, 267, 673, 10.1038/267673a0 Zhang, 2009, Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold, Carbon, 47, 1311, 10.1016/j.carbon.2009.01.014 Mosnáčková, 2015, Influence of preparation methods on the electrical and nanomechanical properties of poly(methyl methacrylate)/multiwalled carbon nanotubes composites, J. Appl. Polym. Sci., 10.1002/app.41721 George, 2018, Green and facile approach to prepare polypropylene/in situ reduced graphene oxide nanocomposites with excellent electromagnetic interference shielding properties, RSC Adv., 8, 30412, 10.1039/C8RA05007D Yan, 2014, Compos. Part A Appl. Sci. Manuf., 67, 1, 10.1016/j.compositesa.2014.08.005 Kılıç, 2016, The impact of NiPc additive and laser light dielectric properties of E63 nematic liquid crystal, Ferroelectrics, 505, 102, 10.1080/00150193.2016.1254586 Elliott, 1987, A.C. conduction in amorphous chalcogenide and pnictide semiconductors, Adv. Phys., 36, 135, 10.1080/00018738700101971 Kurt, 2010, A study on the optical properties of three‐armed polystyrene and poly (styrene‐b‐isobutyl methacrylate), Polym. Eng. Sci., 50, 268, 10.1002/pen.21530 Abu-Jamous, 2010, Study of the electrical conduction in poly(ethylene oxide) doped with iodine, Physica B Condens, 405, 2762, 10.1016/j.physb.2010.02.050 Tauc, 1974 Mott, 1979 Yahia, 2018, Design of smart optical sensor using polyvinyl alcohol/Fluorescein sodium salt: laser filters and optical limiting effect, J. Mol. Struct., 1156, 492, 10.1016/j.molstruc.2017.12.008 Soni, 2018, Mater. Res. Express, 5 Oboudi, 2015, Dispersion Characterization of conductive polymer, Int. J. Electrochem. Sci., 10, 1555, 10.1016/S1452-3981(23)05093-9 Al-Ammar, 2013, Synthesis and study of optical properties of (PMMA-CrCl2) composites, Chem. Mater. Eng., 1, 85, 10.13189/cme.2013.010304 Rabee, 2016, Int. J. Sci. Res., 5, 879 Mergen, 2019, Effects of GNP addition on optical properties and band gap energies of PMMA films, Polym. Compos., 40, 1862, 10.1002/pc.24948 Tahir, 2010, Optical properties of polymer composite PS-PC thin films, J. Kirkuk Univ. Scientific Studies, 5, 93, 10.32894/kujss.2010.41097 Sangawar, 2013, Evolution of the optical properties of Polystyrene thin films filled with Zinc Oxide nanoparticles, IJSER, 4, 2700 Shanshool, 2016, Investigation of energy band gap in polymer/ZnO nanocomposites, J. Mater. Sci. Mater. Electron., 27, 9804, 10.1007/s10854-016-5046-8 Jaleh, 2011, UV-degradation effect on optical and surface properties of polystyrene-TiO2 nanocomposite film, J. Iran. Chem. Soc., 8, 161, 10.1007/BF03254293 Ziman, 1979