A comparative study on the AC/DC conductivity, dielectric and optical properties of polystyrene/graphene nanoplatelets (PS/GNP) and multi-walled carbon nanotube (PS/MWCNT) nanocomposites
Tài liệu tham khảo
Jang, 2016, Graphene-based flexible and stretchable electronics, Adv. Mater., 28, 4184, 10.1002/adma.201504245
Huynh, 2018, Electrical property enhancement by controlled percolation structure of carbon black in polymer-based nanocomposites via nanosecond pulsed electric field, Compos. Sci. Technol., 154, 165, 10.1016/j.compscitech.2017.09.019
Chana, 2018, A critical review on multifunctional composites as structural capacitors for energy storage, Compos. Struct., 188, 126, 10.1016/j.compstruct.2017.12.072
Mohana, 2018, Graphene-based materials and their composites: a review on production, applications and product limitations, Compos. B Eng., 142, 200, 10.1016/j.compositesb.2018.01.013
Liu, 2018, Compos. Sci. Technol., 159, 152, 10.1016/j.compscitech.2018.02.041
Zhan, 2017, Conductive polymer nanocomposites: a critical review of modern advanced devices, J. Mater. Chem. C., 5, 1569, 10.1039/C6TC04269D
Yu, 2017, Fabrication technologies and sensing applications of graphene-based composite films: advances and challenges, Biosens. Bioelectron., 89, 72, 10.1016/j.bios.2016.01.081
Punetha, 2017, Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene, Prog. Polym. Sci., 67, 1, 10.1016/j.progpolymsci.2016.12.010
Silva, 2018, Graphene‐polymer nanocomposites for biomedical applications, Polym. Adv. Technol., 29, 687, 10.1002/pat.4164
Inzelt, 2017, Recent advances in the field of conducting polymers, J. Solid State Electrochem., 21, 1965, 10.1007/s10008-017-3611-6
Du, 2012, The fabrication properties and uses of graphene/polymer composites, Macromol. Chem. Phys., 213, 1060, 10.1002/macp.201200029
Al-Saleh, 2015, Influence of conductive network structure on the EMI shielding and electrical percolation of carbon nanotube/polymer nanocomposites, Synth. Met., 205, 78, 10.1016/j.synthmet.2015.03.032
Maiti, 2014, Low percolation threshold and high electrical conductivity in melt-blended polycarbonate/multiwall carbon nanotube nanocomposites in the presence of poly(ε-caprolactone), Polym. Eng. Sci., 54, 646, 10.1002/pen.23600
Cui, 2018, Facile fabrication of highly conductive polystyrene/nanocarbon composites with robust interconnected network via electrostatic attraction strategy, J. Mater. Chem. C., 6, 550, 10.1039/C7TC04752E
Bagotia, 2017, Studies on toughened polycarbonate/multiwalled carbon nanotubes nanocomposites, Compos. B Eng., 124, 101, 10.1016/j.compositesb.2017.05.037
Milani, 2013, Polypropylene/graphene nanosheet nanocomposites by in situ polymerization: synthesis, characterization and fundamental properties, Compos. Sci. Technol., 84, 1, 10.1016/j.compscitech.2013.05.001
Bressanin, 2018, Electrically conductive nanocomposites of PMMA and carbon nanotubes prepared by in situ polymerization under probe sonication, Chem. Pap., 72, 1799, 10.1007/s11696-018-0443-5
Lai, 2018, Flexible poly(vinyl alcohol)/reduced graphene oxide coated carbon composites for electromagnetic interference shielding, ACS Appl. Nano Mater., 1, 5854, 10.1021/acsanm.8b01499
Kaseem, 2016, Fabrication and materials properties of polystyrene/carbon nanotube (PS/CNT) composites: a review, Eur. Polym. J., 79, 36, 10.1016/j.eurpolymj.2016.04.011
Ma, 2014, Perspectives of carbon nanotubes/polymer nanocomposites for wind blade materials, Renew. Sustain. Energy Rev., 30, 651, 10.1016/j.rser.2013.11.008
Mallakpour, 2018, Preparation of polystyrene/MWCNT‐Valine composites: Investigation of optical, morphological, thermal, and electrical conductivity properties, Polym. Adv. Technol., 29, 1182, 10.1002/pat.4229
Zhao, 2018, Fabrication of pristine graphene-based conductive polystyrene composites towards high performance and light-weight, Compos. Sci. Technol., 159, 232, 10.1016/j.compscitech.2018.02.013
Zeimaran, 2015, Polystyrene carbon nanotube nanocomposites
Zhang, 2017, Grafting of polystyrene onto reduced graphene oxide by emulsion polymerization for dielectric polymer composites: high dielectric constant and low dielectric loss tuned by varied grafting amount of polystyrene, Eur. Polym. J., 94, 196, 10.1016/j.eurpolymj.2017.07.008
Han, 2019, Multiwalled carbon nanotubes encapsulated polystyrene: a facile one-step synthesis, electrical and thermal properties, J. Mater. Sci., 54, 6227, 10.1007/s10853-018-03267-w
Mergen, 2020, Electrical, optical, and mechanical percolations of multi-walled carbon nanotube and carbon mesoporous-doped polystyrene composites, J. Compos. Mater., 54, 31, 10.1177/0021998319859053
Arda, 2018, Electrical, optical and mechanical properties of PS/GNP composite films, Phase Transitions, 91, 887, 10.1080/01411594.2018.1506879
Wang, 2016, Ultralow electrical percolation in graphene aerogel/epoxy composites, Chem. Mater., 28, 6731, 10.1021/acs.chemmater.6b03206
Basua, 2012, Recent developments on graphene and graphene oxide based solid state gas sensors, Sensor. Actuator. B Chem., 173, 1, 10.1016/j.snb.2012.07.092
Bhattacharya, 2016, Polymer nanocomposites—a comparison between carbon nanotubes graphene and clay as nanofillers, Materials, 9, 262, 10.3390/ma9040262
Nadiv, 2018, Performance of nano-carbon loaded polymer composites: dimensionality matters, Carbon, 126, 410, 10.1016/j.carbon.2017.10.039
Afzal, 2016, Perspectives of polystyrene composite with fullerene carbon black graphene and carbon nanotube: a review, Polym. Plast. Technol. Eng., 55, 1988, 10.1080/03602559.2016.1185632
Huang, 2017, The effect of geometric factor of carbon nanofillers on the electrical conductivity and electromagnetic interference shielding properties of poly(trimethylene terephthalate) composites: a comparative study, J. Mater. Sci., 52, 2560, 10.1007/s10853-016-0549-5
Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0
Suhr, 2007, Fatigue resistance of aligned carbon nanotube arrays under cyclic compression, Nat. Nanotechnol., 2, 417, 10.1038/nnano.2007.186
Evingur, 2011, Gelation, electrical conductivity and elasticity of PAM- MWNT, Mater. Res. Soc. Symp. Proc., 1312, 10.1557/opl.2011.117
Shah, 2015, Progression from graphene and graphene oxide to high performance polymer-based nanocomposite: a review, Polym. Plast. Technol. Eng., 54, 173, 10.1080/03602559.2014.955202
Ma, 2010, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review, Compos. Part A Appl. Sci. Manuf., 41, 1345, 10.1016/j.compositesa.2010.07.003
Zaman, 2012, A facile approach to chemically modified graphene and its polymer nanocomposites, Adv. Funct. Mater., 22, 2735, 10.1002/adfm.201103041
Zaman, 2012, From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites, Nanoscale, 4, 4578, 10.1039/c2nr30837a
Marsden, 2018, Electrical percolation in graphene–polymer composites, 2D Mater., 5, 10.1088/2053-1583/aac055
Al-Saleh, 2016, Graphene nanoplatelet–polystyrene nanocomposite: dielectric and charge storage behaviors, J. Electron. Mater., 45, 3532, 10.1007/s11664-016-4505-6
Arda, 2018, Electrical and optical percolations in PMMA/GNP composite films, Phase Transitions, 91, 546, 10.1080/01411594.2018.1432053
Liu, 2018, Constructing a double-percolated conductive network in a carbon nanotube/polymer-based flexible semiconducting composite, Compos. Sci. Technol., 154, 45, 10.1016/j.compscitech.2017.11.003
Stauffer, 1994
Du, 2011, Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure, Carbon, 49, 1094, 10.1016/j.carbon.2010.11.013
Stauffer, 2009, Classical percolation
Ayesh, 2013, Electrical, optical, and rheological properties of ozone-treated multiwalled carbon nanotubes–polystyrene nanocomposites, J. Reinforc. Plast. Compos., 32, 359, 10.1177/0731684412470016
Park, 2014, Electrical and thermal conductivities of reduced graphene oxide/polystyrene composites, Appl. Phys. Lett., 104, 10.1063/1.4869026
Zhao, 2014, Electrically conductive graphene-filled polymer composites with well organized three-dimensional microstructure, Mater. Lett., 121, 74, 10.1016/j.matlet.2014.01.100
Tu, 2016, A facile approach for preparation of polystyrene/graphene nanocomposites with ultra-low percolation threshold through an electrostatic assembly process, Compos. Sci. Technol., 134, 49, 10.1016/j.compscitech.2016.08.003
Wu, 2013, Highly conductive nanocomposites with three-dimensional, compactly interconnected graphene networks via a self-assembly process, Adv. Funct. Mater., 23, 506, 10.1002/adfm.201201231
Wang, 2015, Electrical percolation and crystallization kinetics of semi-crystalline polystyrene composites filled with graphene nanosheets, Mater. Chem. Phys., 164, 206, 10.1016/j.matchemphys.2015.08.046
Seidel, 2009, A micromechanics model for the electrical conductivity of nanotube-polymer nanocomposites, J. Compos. Mater., 43, 917, 10.1177/0021998308105124
Li, 2007, Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes, Adv. Funct. Mater., 17, 3207, 10.1002/adfm.200700065
Du, 2004, Nanotube networks in polymer nanocomposites: rheology and electrical conductivity, Macromolecules, 37, 9048, 10.1021/ma049164g
Arjmand, 2015, Broadband dielectric properties of multiwalled carbon nanotube/polystyrene composites, Polym. Eng. Sci., 55, 173, 10.1002/pen.23881
Deshmukh, 2016, Synergistic effect of vanadium pentoxide and graphene oxide in polyvinyl alcohol for energy storage application, Eur. Polym. J., 76, 14, 10.1016/j.eurpolymj.2016.01.022
Lu, 2006, Influence of the relaxation of Maxwell-Wagner-Sillars polarization and dc conductivity on the dielectric behaviors of nylon 1010, J. Appl. Phys., 100, 10.1063/1.2336494
Jonscher, 1977, The ‘universal’ dielectric response, Nature, 267, 673, 10.1038/267673a0
Zhang, 2009, Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold, Carbon, 47, 1311, 10.1016/j.carbon.2009.01.014
Mosnáčková, 2015, Influence of preparation methods on the electrical and nanomechanical properties of poly(methyl methacrylate)/multiwalled carbon nanotubes composites, J. Appl. Polym. Sci., 10.1002/app.41721
George, 2018, Green and facile approach to prepare polypropylene/in situ reduced graphene oxide nanocomposites with excellent electromagnetic interference shielding properties, RSC Adv., 8, 30412, 10.1039/C8RA05007D
Yan, 2014, Compos. Part A Appl. Sci. Manuf., 67, 1, 10.1016/j.compositesa.2014.08.005
Kılıç, 2016, The impact of NiPc additive and laser light dielectric properties of E63 nematic liquid crystal, Ferroelectrics, 505, 102, 10.1080/00150193.2016.1254586
Elliott, 1987, A.C. conduction in amorphous chalcogenide and pnictide semiconductors, Adv. Phys., 36, 135, 10.1080/00018738700101971
Kurt, 2010, A study on the optical properties of three‐armed polystyrene and poly (styrene‐b‐isobutyl methacrylate), Polym. Eng. Sci., 50, 268, 10.1002/pen.21530
Abu-Jamous, 2010, Study of the electrical conduction in poly(ethylene oxide) doped with iodine, Physica B Condens, 405, 2762, 10.1016/j.physb.2010.02.050
Tauc, 1974
Mott, 1979
Yahia, 2018, Design of smart optical sensor using polyvinyl alcohol/Fluorescein sodium salt: laser filters and optical limiting effect, J. Mol. Struct., 1156, 492, 10.1016/j.molstruc.2017.12.008
Soni, 2018, Mater. Res. Express, 5
Oboudi, 2015, Dispersion Characterization of conductive polymer, Int. J. Electrochem. Sci., 10, 1555, 10.1016/S1452-3981(23)05093-9
Al-Ammar, 2013, Synthesis and study of optical properties of (PMMA-CrCl2) composites, Chem. Mater. Eng., 1, 85, 10.13189/cme.2013.010304
Rabee, 2016, Int. J. Sci. Res., 5, 879
Mergen, 2019, Effects of GNP addition on optical properties and band gap energies of PMMA films, Polym. Compos., 40, 1862, 10.1002/pc.24948
Tahir, 2010, Optical properties of polymer composite PS-PC thin films, J. Kirkuk Univ. Scientific Studies, 5, 93, 10.32894/kujss.2010.41097
Sangawar, 2013, Evolution of the optical properties of Polystyrene thin films filled with Zinc Oxide nanoparticles, IJSER, 4, 2700
Shanshool, 2016, Investigation of energy band gap in polymer/ZnO nanocomposites, J. Mater. Sci. Mater. Electron., 27, 9804, 10.1007/s10854-016-5046-8
Jaleh, 2011, UV-degradation effect on optical and surface properties of polystyrene-TiO2 nanocomposite film, J. Iran. Chem. Soc., 8, 161, 10.1007/BF03254293
Ziman, 1979