Low cost novel PEO based nano-composite for semiconductor and He–Ne lasers beam attenuation: Structural and optical properties

Optical Materials - Tập 129 - Trang 112502 - 2022
Chro O. Saeed1, Abdulqader A. Qader1, Shujahadeen B. Aziz1,2
1Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq
2The Development Center for Research and Training (DCRT), University of Human Development, Sulaymaniyah, Kurdistan Region, Iraq

Tài liệu tham khảo

Schadler, 2003 Barkoula, 2008, Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene, Polym. Polym. Compos., 16, 101, 10.1177/096739110801600203 Hasan, 2009, Nanotube - polymer composites for ultrafast photonics, Adv. Mater., 21, 3874, 10.1002/adma.200901122 Bhiwankar, 2006, Melt intercalation/exfoliation of polystyrene-sodium-montmorillonite nanocomposites using sulfonated polystyrene ionomer compatibilizers, Polymer, 47, 6684, 10.1016/j.polymer.2006.07.017 Taha, 2017, Optical and thermogravimetric analysis of Pb3O4/PVC nanocomposites, J. Mater. Sci. Mater. Electron., 28, 12108, 10.1007/s10854-017-7024-1 Woodward, 2015, 2D saturable absorbers for fibre lasers, Appl. Sci., 5, 1440, 10.3390/app5041440 Kwong, 2004, Poly(3-hexylthiophene): TiO2 nanocomposites for solar cell applications, Nanotechnology, 15, 1156, 10.1088/0957-4484/15/9/008 Pradhan, 2008, Carbon nanotube-polymer nanocomposite infrared sensor, Nano Lett., 8, 1142, 10.1021/nl0732880 Holder, 2008, Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices, J. Mater. Chem., 18, 1064, 10.1039/b712176h Pirsa, 2017, Chemiresistive gas sensors based on conducting polymers, Mater. Sci. Eng. Concepts, Methodol. Tools, Appl., 1–3, 543 Zare, 2013, Recent progress on preparation and properties of nanocomposites from recycled polymers: a review, Waste Manag., 33, 598, 10.1016/j.wasman.2012.07.031 Yang, 2010, Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites, J. Appl. Polym. Sci., 116, 2658, 10.1002/app.31787 Yang, 2002, Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery, J. Power Sources, 112, 497, 10.1016/S0378-7753(02)00438-X E. Pereira and A. Gandini, “Characterisation of PEO – Al 2 O 3 Composite Polymer Electrolytes.”. Ngai, 2016, A review of polymer electrolytes: fundamental, approaches and applications, Ionics, 22, 1259, 10.1007/s11581-016-1756-4 Naveen Kumar, 2015, Optical, magnetic and electrical properties of multifunctional Cr3+: polyethylene oxide (PEO) + polyvinylpyrrolidone (PVP) polymer composites, J. Mol. Struct., 1100, 546, 10.1016/j.molstruc.2015.07.066 Aziz, 2017, Morphological and optical characteristics of chitosan(1−x):Cuox (4 ≤ x ≤ 12) based polymer nano-composites: optical dielectric loss as an alternative method for tauc's model, Nanomaterials, 7, 1, 10.3390/nano7120444 Naveen Kumar, 2014, Structural, thermal and optical properties of Tb3+, Eu 3+ and co-doped (Tb3++Eu3+): PEO+PVP polymer films, J. Lumin., 147, 316, 10.1016/j.jlumin.2013.11.027 Elimat, 2010, Optical characterization of poly (ethylene oxide)/alumina composites, Phys. B Condens. Matter, 405, 3756, 10.1016/j.physb.2010.05.081 Al-Faleh, 2011, A study on optical absorption and constants of doped poly(ethylene oxide), Phys. B Condens. Matter, 406, 1919, 10.1016/j.physb.2011.01.076 Padmaja, 2013, Structural and optical properties of CdS/PEO nanocomposite solid films, Mater. Sci. Semicond. Process., 16, 1502, 10.1016/j.mssp.2013.06.002 Karami, 2008, Synthesis of lead oxide nanoparticles by Sonochemical method and its application as cathode and anode of lead-acid batteries, Mater. Chem. Phys., 108, 337, 10.1016/j.matchemphys.2007.09.045 Li, 2005, Preparation of PbO nanoparticles by microwave irradiation and their application to Pb(II)-selective electrode based on cellulose acetate, Mater. Chem. Phys., 90, 262, 10.1016/j.matchemphys.2004.02.022 Karami, 2008, Synthesis of uniform nano-structured lead oxide by sonochemical method and its application as cathode and anode of lead-acid batteries, Mater. Res. Bull., 43, 3054, 10.1016/j.materresbull.2007.11.014 Panetta, 2018, Screen printed Pb3O4 films and their application to photoresponsive and photoelectrochemical devices, Materials, 11, 10.3390/ma11071189 Zhou, 2012, Photoinduced reactions between Pb3O4 and organic dyes in aqueous solution under visible light, Inorg. Chem., 51, 12594, 10.1021/ic301723m Terpstra, 1997, The electronic structure of the mixed valence compound Pb3O4, J. Phys. Chem. Solid., 58, 561, 10.1016/S0022-3697(96)00165-5 Ibrahim, 2011, Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes, Ionics, 17, 399, 10.1007/s11581-011-0524-8 Kim, 2013, Study on ion conductivity and crystallinity of composite polymer electrolytes based on poly(ethylene oxide)/poly(acrylonitrile) containing nano-sized Al2O3 Fillers, J. Nanosci. Nanotechnol., 13, 7865, 10.1166/jnn.2013.8107 Aziz, 2019, Structural, thermal, morphological and optical properties of PEO filled with biosynthesized Ag nanoparticles: new insights to band gap study, Results Phys., 13, 102220, 10.1016/j.rinp.2019.102220 Muhammed, 2020, Optical dielectric loss as a novel approach to specify the types of electron transition: XRD and UV-vis as a non-destructive techniques for structural and optical characterization of peo based nanocomposites, Materials, 13, 1, 10.3390/ma13132979 Aziz, 2016, Modifying poly(vinyl alcohol) (PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices, J. Electron. Mater., 45, 736, 10.1007/s11664-015-4191-9 Parola, 2016, Optical properties of hybrid organic-inorganic materials and their applications, Adv. Funct. Mater., 26, 6506, 10.1002/adfm.201602730 Choudhary, 2018, ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices, Curr. Appl. Phys., 18, 1041, 10.1016/j.cap.2018.05.023 Abdelrazek, 2018, Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles, J. Mater. Res. Technol., 7, 419, 10.1016/j.jmrt.2017.06.009 Dhatarwal, 2021, Investigation on the optical properties of (PVP/PVA)/Al2O3 nanocomposite films for green disposable optoelectronics, Phys. B Condens. Matter, 613, 412989, 10.1016/j.physb.2021.412989 Aziz, 2015, Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites, J. Mater. Sci. Mater. Electron., 26, 8022, 10.1007/s10854-015-3457-6 Feng, 2009, Optical properties of new photovoltaic materials: AgCuO2 and Ag2Cu2O3, Solid State Commun., 149, 1569, 10.1016/j.ssc.2009.05.042 Sudhahar, 2013, Studies on structural, spectral, and optical properties of organic nonlinear optical single crystal: 2-Amino-4,6-dimethylpyrimidinium p-hydroxybenzoate, J. Mater., 2013, 1 Abomostafa, 2021, Linear and nonlinear optical properties of innovative synthesis of nickel nanoparticles in polystyrene matrix as a new optical system, J. Mol. Struct., 1225, 129126, 10.1016/j.molstruc.2020.129126 Abdullah, 2015, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite, J. Mater. Sci. Mater. Electron., 26, 5303, 10.1007/s10854-015-3067-3 Sabry, 2019, Optical analysis, optical limiting and electrical properties of novel PbI2/PVA polymeric nanocomposite films for electronic optoelectronic applications, Mater. Res. Express, 6, 115339, 10.1088/2053-1591/ab4c24 Aziz, 2017, Optical properties of pure and doped PVA:PEO based solid polymer blend electrolytes: two methods for band gap study, J. Mater. Sci. Mater. Electron., 28, 7473, 10.1007/s10854-017-6437-1 Mohammed, 2020, Optical linearity and bandgap analysis of RhB-doped PMMA/FTO polymeric composites films: a new designed optical system for laser power attenuation, Opt Laser. Technol., 121, 105823, 10.1016/j.optlastec.2019.105823 Aslam Manthrammel, 2019, Optical analysis of nanostructured rose bengal thin films using Kramers–Kronig approach: new trend in laser power attenuation, Opt Laser. Technol., 112, 207, 10.1016/j.optlastec.2018.11.024 Bakr, 2011, Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only, Pramana - J. Phys., 76, 519, 10.1007/s12043-011-0024-4 Saini, 2013, Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles, Mater. Chem. Phys., 139, 802, 10.1016/j.matchemphys.2013.02.035 Spitzer, 1957, Determination of optical constants and carrier effective mass of semiconductors, Phys. Rev., 106, 882, 10.1103/PhysRev.106.882 Kiselev, 2004, Aluminum effective mass, 49, 302 Park, 2010, A review of conduction phenomena in Li-ion batteries, J. Power Sources, 195, 7904, 10.1016/j.jpowsour.2010.06.060 Chani, 2013, Polyaniline based impedance humidity sensors, Solid State Sci., 18, 78, 10.1016/j.solidstatesciences.2013.01.005 Hussein, 2020, Steps toward the band gap identification in polystyrene based solid polymer nanocomposites integrated with tin titanate nanoparticles, Polymers, 12, 1, 10.3390/polym12102320 Biskri, 2016, A comparative study of structural stability and mechanical and optical properties of fluorapatite (Ca5(PO4)3F) and lithium disilicate (Li2Si2O5) components forming dental glass–ceramics: first principles study, J. Electron. Mater., 45, 5082, 10.1007/s11664-016-4681-4 Ravindra, 2007, Energy gap-refractive index relations in semiconductors - an overview, Infrared Phys. Technol., 50, 21, 10.1016/j.infrared.2006.04.001 Cardona, 1970, Optical properties and electronic density of states, J Res Nat Bur Stand Sect A Phys Chem, 74 A, 253, 10.6028/jres.074A.021 Guo, 2012, First-principles study of electronic structures and optical properties of Cu, Ag, and Au-doped anatase TiO 2, Phys. B Condens. Matter, 407, 1003, 10.1016/j.physb.2011.12.128 Pikhtin, 1969, Infrared absorption in gallium phosphide, Phys. Status Solidi, 34, 815, 10.1002/pssb.19690340244 Aziz, 2017, Fabrication of polymer blend composites based on [PVA-PVP](1−x):(Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: structural and optical properties, Mater. Sci. Semicond. Process., 71, 197, 10.1016/j.mssp.2017.05.035 Aziz, 2017, New method for the development of plasmonic metal-semiconductor interface layer: polymer composites with reduced energy band gap, J. Nanomater., 2017, 10.1155/2017/8140693 Aziz, 2021, Characteristics of poly(Vinyl alcohol) (PVA) based composites integrated with green synthesized Al3+-metal complex: structural, optical, and localized density of state analysis, Polymers, 13, 10.3390/polym13081316 Aziz, 2021, Characteristics of peo incorporated with CaTiO3 nanoparticles: structural and optical properties, Polymers, 13, 10.3390/polym13203484 Khairy, 2020, Facile synthesis, structure analysis and optical performance of manganese oxide-doped PVA nanocomposite for optoelectronic and optical cut-off laser devices, J. Mater. Sci. Mater. Electron., 31, 8072, 10.1007/s10854-020-03348-0 Ibrahim, 2012, Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube, J. Lumin., 132, 147, 10.1016/j.jlumin.2011.08.004 Edukondalu, 2015, Optical properties of amorphous Na2O-WO3-B2O3 thin films deposited by electron beam evaporation, Optik, 126, 2163, 10.1016/j.ijleo.2015.05.090 Edukondalu, 2016, Optical properties of amorphous Li 2 O–WO 3 –B 2 O 3 thin films deposited by electron beam evaporation, J. Taibah Univ. Sci., 10, 363, 10.1016/j.jtusci.2015.03.012 Hemalatha, 2014, Synthesis, characterization and optical properties of hybrid PVA-ZnO nanocomposite: a composition dependent study, Mater. Res. Bull., 51, 438, 10.1016/j.materresbull.2013.12.055 Aziz, 2013, Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder, Int. J. Med., 2013, 1 Sengwa, 2019, Nonlinear optical and dielectric properties of TiO2 nanoparticles incorporated PEO/PVP blend matrix based multifunctional polymer nanocomposites, J. Mater. Sci. Mater. Electron., 30, 12275, 10.1007/s10854-019-01587-4 AlAbdulaal, 2021, Optical linearity and nonlinearity, structural morphology of TiO2-doped PMMA/FTO polymeric nanocomposite films: laser power attenuation, Optik, 227, 166036, 10.1016/j.ijleo.2020.166036 Frumar, 2003, Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films, J. Non-Cryst. Solids, 326, 399, 10.1016/S0022-3093(03)00446-0 Shkir, 2017, Structural, linear and third order nonlinear optical properties of drop casting deposited high quality nanocrystalline phenol red thin films, J. Mater. Sci. Mater. Electron., 28, 10573, 10.1007/s10854-017-6831-8 Tichá, 2002, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides, J. Optoelectron. Adv. Mater., 4, 381 Adair, 1989, Nonlinear refractive index of optical crystals, Phys. Rev. B, 39, 3337, 10.1103/PhysRevB.39.3337 Soliman, 2020, Structural, linear and nonlinear optical properties of Ni nanoparticles – polyvinyl alcohol nanocomposite films for optoelectronic applications, Opt. Mater., 107, 110037, 10.1016/j.optmat.2020.110037 Stepanov, 2018 Barabanenkov, 1991 Elhosiny Ali, 2021, Optical absorption and linear/nonlinear parameters of polyvinyl alcohol films doped by fullerene, Chin. J. Phys., 72, 270, 10.1016/j.cjph.2021.04.022