Low cost novel PEO based nano-composite for semiconductor and He–Ne lasers beam attenuation: Structural and optical properties
Tài liệu tham khảo
Schadler, 2003
Barkoula, 2008, Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene, Polym. Polym. Compos., 16, 101, 10.1177/096739110801600203
Hasan, 2009, Nanotube - polymer composites for ultrafast photonics, Adv. Mater., 21, 3874, 10.1002/adma.200901122
Bhiwankar, 2006, Melt intercalation/exfoliation of polystyrene-sodium-montmorillonite nanocomposites using sulfonated polystyrene ionomer compatibilizers, Polymer, 47, 6684, 10.1016/j.polymer.2006.07.017
Taha, 2017, Optical and thermogravimetric analysis of Pb3O4/PVC nanocomposites, J. Mater. Sci. Mater. Electron., 28, 12108, 10.1007/s10854-017-7024-1
Woodward, 2015, 2D saturable absorbers for fibre lasers, Appl. Sci., 5, 1440, 10.3390/app5041440
Kwong, 2004, Poly(3-hexylthiophene): TiO2 nanocomposites for solar cell applications, Nanotechnology, 15, 1156, 10.1088/0957-4484/15/9/008
Pradhan, 2008, Carbon nanotube-polymer nanocomposite infrared sensor, Nano Lett., 8, 1142, 10.1021/nl0732880
Holder, 2008, Hybrid nanocomposite materials with organic and inorganic components for opto-electronic devices, J. Mater. Chem., 18, 1064, 10.1039/b712176h
Pirsa, 2017, Chemiresistive gas sensors based on conducting polymers, Mater. Sci. Eng. Concepts, Methodol. Tools, Appl., 1–3, 543
Zare, 2013, Recent progress on preparation and properties of nanocomposites from recycled polymers: a review, Waste Manag., 33, 598, 10.1016/j.wasman.2012.07.031
Yang, 2010, Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites, J. Appl. Polym. Sci., 116, 2658, 10.1002/app.31787
Yang, 2002, Alkaline composite PEO-PVA-glass-fibre-mat polymer electrolyte for Zn-air battery, J. Power Sources, 112, 497, 10.1016/S0378-7753(02)00438-X
E. Pereira and A. Gandini, “Characterisation of PEO – Al 2 O 3 Composite Polymer Electrolytes.”.
Ngai, 2016, A review of polymer electrolytes: fundamental, approaches and applications, Ionics, 22, 1259, 10.1007/s11581-016-1756-4
Naveen Kumar, 2015, Optical, magnetic and electrical properties of multifunctional Cr3+: polyethylene oxide (PEO) + polyvinylpyrrolidone (PVP) polymer composites, J. Mol. Struct., 1100, 546, 10.1016/j.molstruc.2015.07.066
Aziz, 2017, Morphological and optical characteristics of chitosan(1−x):Cuox (4 ≤ x ≤ 12) based polymer nano-composites: optical dielectric loss as an alternative method for tauc's model, Nanomaterials, 7, 1, 10.3390/nano7120444
Naveen Kumar, 2014, Structural, thermal and optical properties of Tb3+, Eu 3+ and co-doped (Tb3++Eu3+): PEO+PVP polymer films, J. Lumin., 147, 316, 10.1016/j.jlumin.2013.11.027
Elimat, 2010, Optical characterization of poly (ethylene oxide)/alumina composites, Phys. B Condens. Matter, 405, 3756, 10.1016/j.physb.2010.05.081
Al-Faleh, 2011, A study on optical absorption and constants of doped poly(ethylene oxide), Phys. B Condens. Matter, 406, 1919, 10.1016/j.physb.2011.01.076
Padmaja, 2013, Structural and optical properties of CdS/PEO nanocomposite solid films, Mater. Sci. Semicond. Process., 16, 1502, 10.1016/j.mssp.2013.06.002
Karami, 2008, Synthesis of lead oxide nanoparticles by Sonochemical method and its application as cathode and anode of lead-acid batteries, Mater. Chem. Phys., 108, 337, 10.1016/j.matchemphys.2007.09.045
Li, 2005, Preparation of PbO nanoparticles by microwave irradiation and their application to Pb(II)-selective electrode based on cellulose acetate, Mater. Chem. Phys., 90, 262, 10.1016/j.matchemphys.2004.02.022
Karami, 2008, Synthesis of uniform nano-structured lead oxide by sonochemical method and its application as cathode and anode of lead-acid batteries, Mater. Res. Bull., 43, 3054, 10.1016/j.materresbull.2007.11.014
Panetta, 2018, Screen printed Pb3O4 films and their application to photoresponsive and photoelectrochemical devices, Materials, 11, 10.3390/ma11071189
Zhou, 2012, Photoinduced reactions between Pb3O4 and organic dyes in aqueous solution under visible light, Inorg. Chem., 51, 12594, 10.1021/ic301723m
Terpstra, 1997, The electronic structure of the mixed valence compound Pb3O4, J. Phys. Chem. Solid., 58, 561, 10.1016/S0022-3697(96)00165-5
Ibrahim, 2011, Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes, Ionics, 17, 399, 10.1007/s11581-011-0524-8
Kim, 2013, Study on ion conductivity and crystallinity of composite polymer electrolytes based on poly(ethylene oxide)/poly(acrylonitrile) containing nano-sized Al2O3 Fillers, J. Nanosci. Nanotechnol., 13, 7865, 10.1166/jnn.2013.8107
Aziz, 2019, Structural, thermal, morphological and optical properties of PEO filled with biosynthesized Ag nanoparticles: new insights to band gap study, Results Phys., 13, 102220, 10.1016/j.rinp.2019.102220
Muhammed, 2020, Optical dielectric loss as a novel approach to specify the types of electron transition: XRD and UV-vis as a non-destructive techniques for structural and optical characterization of peo based nanocomposites, Materials, 13, 1, 10.3390/ma13132979
Aziz, 2016, Modifying poly(vinyl alcohol) (PVA) from insulator to small-bandgap polymer: a novel approach for organic solar cells and optoelectronic devices, J. Electron. Mater., 45, 736, 10.1007/s11664-015-4191-9
Parola, 2016, Optical properties of hybrid organic-inorganic materials and their applications, Adv. Funct. Mater., 26, 6506, 10.1002/adfm.201602730
Choudhary, 2018, ZnO nanoparticles dispersed PVA–PVP blend matrix based high performance flexible nanodielectrics for multifunctional microelectronic devices, Curr. Appl. Phys., 18, 1041, 10.1016/j.cap.2018.05.023
Abdelrazek, 2018, Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles, J. Mater. Res. Technol., 7, 419, 10.1016/j.jmrt.2017.06.009
Dhatarwal, 2021, Investigation on the optical properties of (PVP/PVA)/Al2O3 nanocomposite films for green disposable optoelectronics, Phys. B Condens. Matter, 613, 412989, 10.1016/j.physb.2021.412989
Aziz, 2015, Tuning the absorption of ultraviolet spectra and optical parameters of aluminum doped PVA based solid polymer composites, J. Mater. Sci. Mater. Electron., 26, 8022, 10.1007/s10854-015-3457-6
Feng, 2009, Optical properties of new photovoltaic materials: AgCuO2 and Ag2Cu2O3, Solid State Commun., 149, 1569, 10.1016/j.ssc.2009.05.042
Sudhahar, 2013, Studies on structural, spectral, and optical properties of organic nonlinear optical single crystal: 2-Amino-4,6-dimethylpyrimidinium p-hydroxybenzoate, J. Mater., 2013, 1
Abomostafa, 2021, Linear and nonlinear optical properties of innovative synthesis of nickel nanoparticles in polystyrene matrix as a new optical system, J. Mol. Struct., 1225, 129126, 10.1016/j.molstruc.2020.129126
Abdullah, 2015, Reducing the optical band gap of polyvinyl alcohol (PVA) based nanocomposite, J. Mater. Sci. Mater. Electron., 26, 5303, 10.1007/s10854-015-3067-3
Sabry, 2019, Optical analysis, optical limiting and electrical properties of novel PbI2/PVA polymeric nanocomposite films for electronic optoelectronic applications, Mater. Res. Express, 6, 115339, 10.1088/2053-1591/ab4c24
Aziz, 2017, Optical properties of pure and doped PVA:PEO based solid polymer blend electrolytes: two methods for band gap study, J. Mater. Sci. Mater. Electron., 28, 7473, 10.1007/s10854-017-6437-1
Mohammed, 2020, Optical linearity and bandgap analysis of RhB-doped PMMA/FTO polymeric composites films: a new designed optical system for laser power attenuation, Opt Laser. Technol., 121, 105823, 10.1016/j.optlastec.2019.105823
Aslam Manthrammel, 2019, Optical analysis of nanostructured rose bengal thin films using Kramers–Kronig approach: new trend in laser power attenuation, Opt Laser. Technol., 112, 207, 10.1016/j.optlastec.2018.11.024
Bakr, 2011, Determination of the optical parameters of a-Si:H thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only, Pramana - J. Phys., 76, 519, 10.1007/s12043-011-0024-4
Saini, 2013, Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles, Mater. Chem. Phys., 139, 802, 10.1016/j.matchemphys.2013.02.035
Spitzer, 1957, Determination of optical constants and carrier effective mass of semiconductors, Phys. Rev., 106, 882, 10.1103/PhysRev.106.882
Kiselev, 2004, Aluminum effective mass, 49, 302
Park, 2010, A review of conduction phenomena in Li-ion batteries, J. Power Sources, 195, 7904, 10.1016/j.jpowsour.2010.06.060
Chani, 2013, Polyaniline based impedance humidity sensors, Solid State Sci., 18, 78, 10.1016/j.solidstatesciences.2013.01.005
Hussein, 2020, Steps toward the band gap identification in polystyrene based solid polymer nanocomposites integrated with tin titanate nanoparticles, Polymers, 12, 1, 10.3390/polym12102320
Biskri, 2016, A comparative study of structural stability and mechanical and optical properties of fluorapatite (Ca5(PO4)3F) and lithium disilicate (Li2Si2O5) components forming dental glass–ceramics: first principles study, J. Electron. Mater., 45, 5082, 10.1007/s11664-016-4681-4
Ravindra, 2007, Energy gap-refractive index relations in semiconductors - an overview, Infrared Phys. Technol., 50, 21, 10.1016/j.infrared.2006.04.001
Cardona, 1970, Optical properties and electronic density of states, J Res Nat Bur Stand Sect A Phys Chem, 74 A, 253, 10.6028/jres.074A.021
Guo, 2012, First-principles study of electronic structures and optical properties of Cu, Ag, and Au-doped anatase TiO 2, Phys. B Condens. Matter, 407, 1003, 10.1016/j.physb.2011.12.128
Pikhtin, 1969, Infrared absorption in gallium phosphide, Phys. Status Solidi, 34, 815, 10.1002/pssb.19690340244
Aziz, 2017, Fabrication of polymer blend composites based on [PVA-PVP](1−x):(Ag2S)x (0.01 ≤ x ≤ 0.03) with small optical band gaps: structural and optical properties, Mater. Sci. Semicond. Process., 71, 197, 10.1016/j.mssp.2017.05.035
Aziz, 2017, New method for the development of plasmonic metal-semiconductor interface layer: polymer composites with reduced energy band gap, J. Nanomater., 2017, 10.1155/2017/8140693
Aziz, 2021, Characteristics of poly(Vinyl alcohol) (PVA) based composites integrated with green synthesized Al3+-metal complex: structural, optical, and localized density of state analysis, Polymers, 13, 10.3390/polym13081316
Aziz, 2021, Characteristics of peo incorporated with CaTiO3 nanoparticles: structural and optical properties, Polymers, 13, 10.3390/polym13203484
Khairy, 2020, Facile synthesis, structure analysis and optical performance of manganese oxide-doped PVA nanocomposite for optoelectronic and optical cut-off laser devices, J. Mater. Sci. Mater. Electron., 31, 8072, 10.1007/s10854-020-03348-0
Ibrahim, 2012, Conductivity and optical studies of plasticized solid polymer electrolytes doped with carbon nanotube, J. Lumin., 132, 147, 10.1016/j.jlumin.2011.08.004
Edukondalu, 2015, Optical properties of amorphous Na2O-WO3-B2O3 thin films deposited by electron beam evaporation, Optik, 126, 2163, 10.1016/j.ijleo.2015.05.090
Edukondalu, 2016, Optical properties of amorphous Li 2 O–WO 3 –B 2 O 3 thin films deposited by electron beam evaporation, J. Taibah Univ. Sci., 10, 363, 10.1016/j.jtusci.2015.03.012
Hemalatha, 2014, Synthesis, characterization and optical properties of hybrid PVA-ZnO nanocomposite: a composition dependent study, Mater. Res. Bull., 51, 438, 10.1016/j.materresbull.2013.12.055
Aziz, 2013, Optical characteristics of polystyrene based solid polymer composites: effect of metallic copper powder, Int. J. Med., 2013, 1
Sengwa, 2019, Nonlinear optical and dielectric properties of TiO2 nanoparticles incorporated PEO/PVP blend matrix based multifunctional polymer nanocomposites, J. Mater. Sci. Mater. Electron., 30, 12275, 10.1007/s10854-019-01587-4
AlAbdulaal, 2021, Optical linearity and nonlinearity, structural morphology of TiO2-doped PMMA/FTO polymeric nanocomposite films: laser power attenuation, Optik, 227, 166036, 10.1016/j.ijleo.2020.166036
Frumar, 2003, Optically and thermally induced changes of structure, linear and non-linear optical properties of chalcogenides thin films, J. Non-Cryst. Solids, 326, 399, 10.1016/S0022-3093(03)00446-0
Shkir, 2017, Structural, linear and third order nonlinear optical properties of drop casting deposited high quality nanocrystalline phenol red thin films, J. Mater. Sci. Mater. Electron., 28, 10573, 10.1007/s10854-017-6831-8
Tichá, 2002, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides, J. Optoelectron. Adv. Mater., 4, 381
Adair, 1989, Nonlinear refractive index of optical crystals, Phys. Rev. B, 39, 3337, 10.1103/PhysRevB.39.3337
Soliman, 2020, Structural, linear and nonlinear optical properties of Ni nanoparticles – polyvinyl alcohol nanocomposite films for optoelectronic applications, Opt. Mater., 107, 110037, 10.1016/j.optmat.2020.110037
Stepanov, 2018
Barabanenkov, 1991
Elhosiny Ali, 2021, Optical absorption and linear/nonlinear parameters of polyvinyl alcohol films doped by fullerene, Chin. J. Phys., 72, 270, 10.1016/j.cjph.2021.04.022