Structural, UV and shielding properties of ZBPC glasses
Tài liệu tham khảo
Pal, 2011, Structural characterization of borate glasses containing zinc and manganese oxides, J. Mod. Phys., 02, 1062, 10.4236/jmp.2011.29129
Thomas, 2013, Spectroscopic and dielectric studies of Sm3+ ions in lithium zinc borate glasses, J. Non-Cryst. Solids, 376, 106, 10.1016/j.jnoncrysol.2013.05.022
Gaafar, 2009, Elastic properties and structural studies on some zinc-borate glasses derived from ultrasonic, FT-IR and X-ray techniques, J. Alloys Compd., 475, 535, 10.1016/j.jallcom.2008.07.114
Sumalatha, 2011, The effect of V2O5 on alkaline earth zinc borate glasses studied by EPR and optical absorption, J. Mol. Struct., 1006, 96, 10.1016/j.molstruc.2011.08.025
Mariyappan, 2018, Effect Bi2O3 on the physical, structural and radiation shielding properties of Er3+ ions doped bismuth sodiumfluoroborate glasses, J. Non-Cryst. Solids, 499, 75, 10.1016/j.jnoncrysol.2018.07.025
Sailaja, 2015, Physical, structural and spectroscopic investigations of Sm3+ doped ZnO mixed alkali borate glass, J. Mol. Struct., 1096, 129, 10.1016/j.molstruc.2015.05.002
Rama Sundari, 2014, Characterization of Cr3+ doped mixed alkali ions effect in zinc borate glasses — physical and spectroscopic investigations, Opt. Mater., 36, 1329, 10.1016/j.optmat.2014.03.023
Ravi, 2015, NIR fluorescence spectroscopic investigations of Er3+ ions doped borate based tellurium calcium zinc niobium oxide glasses, J. Lumin., 164, 154, 10.1016/j.jlumin.2015.03.040
Karthikeyan, 2005, Optical and non-linear optical properties of Nd3+−doped heavy metal borate glasses, Opt. Commun., 246, 153, 10.1016/j.optcom.2004.10.051
El-Falaky, 2012, Ultrasonic relaxation in zinc–borate glasses, Curr. Appl. Phys., 12, 589, 10.1016/j.cap.2011.09.009
Pye, 2012, 617
Shenkai, 1982, J. Am. Ceram. Soc., 65, 123, 10.1111/j.1151-2916.1982.tb10369.x
Shanmugavelu, 2014, Optical properties of Nd3+ doped bismuth zinc borate glasses, Spectrochim, Acta A Mol. Biomol. Spectrosc., 122, 422, 10.1016/j.saa.2013.11.051
Almeida, 2015, Waveguides and nonlinear index of refraction of borate glass doped with transition metals, Opt. Mater., 42, 522, 10.1016/j.optmat.2015.01.048
Jung, 2009, Conversion kinetics of silicate, borosilicate, and borate bioactive glasses to hydroxyapatite, Phys. Chem. Glas., 50, 85
Colak, 2016, On the dual role of ZnO in zinc-borate glasses, J. Non-Cryst. Solids, 432, 406, 10.1016/j.jnoncrysol.2015.10.040
Metwalli, 2003, Copper redox behavior, structure and properties of copper lead borate glasses, J. Non-Cryst. Solids, 317, 221, 10.1016/S0022-3093(02)01853-7
Bae, 1993, Crystallization of copper metaphosphate glass, J. Am. Ceram. Soc., 76, 1395, 10.1111/j.1151-2916.1993.tb03917.x
Vasantharani, 2013, Characterization of lead based binary and ternary glass systems using spectroscopic methods, Int. J. Res. Pure Appl. Phys., 3, 1
Yao, 2016, Structure and mechanical properties of copper–lead and copper–zinc borate glasses, J. Non-Cryst. Solids, 435, 55, 10.1016/j.jnoncrysol.2015.12.005
Shannon, 1976, Revised effective ionic radii and systematic studies of interatomie distances in halides and chaleogenides, Acta Cryst. V. A, 32, 751, 10.1107/S0567739476001551
Dayanand, 1995, IR and optical properties of PbO glass containing a small amount of silica, Mater. Lett., 23, 309, 10.1016/0167-577X(95)00036-4
Ramyadevi, 2011, Copper nanoparticles synthesized by polyol process used to control hematophagous parasites, Parasitol. Res., 109, 1403, 10.1007/s00436-011-2387-3
Alarcon, 2007, An alternative procedure for the determination of the optical band gap and thickness of amorphous carbon nitride thin films, Appl. Surf. Sci., 254, 412, 10.1016/j.apsusc.2007.07.052
Souri, 2009, Band gap determination by absorption spectrum fitting method (ASF) and structural properties of different compositions of (60-x) V2O5 –40TeO2 –xSb2O3 glasses, J. Non-Cryst. Solids, 355, 1597, 10.1016/j.jnoncrysol.2009.06.003
Souri, 2015, A new method for the determination of optical band gap and the nature of optical transitions in semiconductors, Appl. Phys. B Lasers Opt., 119, 273, 10.1007/s00340-015-6053-9
Ali, 2017, FTIR and UV spectra of pentaternary borate glasses, Measurement, 105, 72, 10.1016/j.measurement.2017.04.010
Dimitrov, 1996, Electronic oxide polarizability and optical basicity of simple oxides, J. Appl. Phys., 79, 1736, 10.1063/1.360962
Kaur, 2016, Heavy metal oxide glasses as gamma rays shielding material, Nucl. Eng. Des., 307, 364, 10.1016/j.nucengdes.2016.07.029
Berger, 1999, XCOM: photon cross sections database, web version 1. 2
Sayyed, 2017, Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications, Radiat. Phys. Chem., 139, 33, 10.1016/j.radphyschem.2017.05.013
Taylor, 2012, Robust calculation of effective atomic numbers: the auto-zeff software, Med. Phys., 39, 1769, 10.1118/1.3689810
Bagheri, 2018, Determination of gamma-ray shielding properties for silicate glasses containing Bi2O3-PbO and BaO, J. Non-Cryst. Solids, 479, 62, 10.1016/j.jnoncrysol.2017.10.006
Waly, 2016, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials, Ann. Nucl. Energy, 96, 26, 10.1016/j.anucene.2016.05.028
Waly, 2018, Shielding properties of glasses with different heavy elements additives for radiation shielding in the energy range 15–300 keV, Radiat. Phys. Chem., 150, 120, 10.1016/j.radphyschem.2018.04.029
Sayyed, 2018, Shielding features of concrete types containing sepiolite mineral: Comprehensive study on experimental, XCOM and MCNPX results, Results Phys., 11, 40, 10.1016/j.rinp.2018.08.029
Kaur, 2018, Gamma rays shielding and sensing application of some rare earth doped lead-alumino-phosphate glasses, Radiat. Phys. Chem., 144, 336, 10.1016/j.radphyschem.2017.09.018
2017, J. Test. Eval., 45
Tekin, 2018, Photon shielding characterizations of bismuth modified borate silicate tellurite glasses using MCNPX Monte Carlo code, Mater. Chem. Phys., 211, 9, 10.1016/j.matchemphys.2018.02.009
Bagheri, 2017, Gamma ray shielding study of bariume bismuthe borosilicate glasses as transparent shielding materials using MCNP-4C Code, XCOM program, and available experimental data, nuclear, Eng. Technol., 49, 216
El-Mallawany, 2018, Simulation of radiation shielding properties of glasses contain PbO, Radiat. Phys. Chem., 151, 239, 10.1016/j.radphyschem.2018.06.035