A two-scale method to rapidly characterize the logarithmic basic creep of concrete by coupling microindentation and uniaxial compression creep test
Tài liệu tham khảo
Torrenti, 2018, Analysis of some basic creep tests on concrete and their implications for modeling, Struct. Concr., 19, 483, 10.1002/suco.201600197
Bažant, 2018
Neville, 1971
Bažant, 1997, Microprestress-solidification theory for concrete creep. I: Aging and drying effects, J. Eng. Mech., 123, 1188, 10.1061/(ASCE)0733-9399(1997)123:11(1188)
Benboudjema, 2002
Wyrzykowski, 2019, Water redistribution-microdiffusion in cement paste under mechanical loading evidenced by 1H NMR, J. Phys. Chem. C, 10.1021/acs.jpcc.9b02436
Pignatelli, 2016, A dissolution-precipitation mechanism is at the origin of concrete creep in moist environments, J. Chem. Phys., 145, 10.1063/1.4955429
Wittmann, 1982, Creep and shrinkage mechanisms, 129
Vandamme, 2009, Nanogranular origin of concrete creep, Proc. Natl. Acad. Sci., 106, 10552, 10.1073/pnas.0901033106
Videla, 2008
Beverly, 2013
Committee, 2007
Le Roy, 1995
Bazant, 2009
Troxell, 1958, Long-time creep and shrinkage tests of plain and reinforced concrete, vol. 58, 1
Brooks, 1978, Predicting long-term creep and shrinkage from short-term tests, Mag. Concr. Res., 30, 51, 10.1680/macr.1978.30.103.51
Zhang, 2014, Long-term creep properties of cementitious materials: Comparing microindentation testing with macroscopic uniaxial compressive testing, Cem. Concr. Res., 58, 89, 10.1016/j.cemconres.2014.01.004
Irfan-ul Hassan, 2016, Elastic and creep properties of young cement paste, as determined from hourly repeated minute-long quasi-static tests, Cem. Concr. Res., 82, 36, 10.1016/j.cemconres.2015.11.007
Bazant, 2015, Model B4 for creep, drying shrinkage and autogenous shrinkage of normal and high-strength concretes with multi-decade applicability, Mat. Struct., 48, 753, 10.1617/s11527-014-0485-2
L’Hermite, 1959, What do we know about the plastic deformation and creep of concrete?, Rilem Bull., 21
Hua, 1995
Granger, 1995, Effect of composition on basic creep of concrete and cement paste, J. Eng. Mech., 121, 1261, 10.1061/(ASCE)0733-9399(1995)121:11(1261)
Bažant, 2004, Temperature effect on concrete creep modeled by microprestress-solidification theory, J. Eng. Mech., 130, 691, 10.1061/(ASCE)0733-9399(2004)130:6(691)
Altoubat, 2002, The pickett effect at early age and experiment separating its mechanisms in tension, Mater. Struct., 35, 211, 10.1007/BF02533082
Sanahuja, 2010, Creep of a CSH gel: a micromechanical approach, An. Acad. Bras. Cienc., 82, 25, 10.1590/S0001-37652010000100004
Sanahuja, 2010, Creep of a C-s-h gel: a micromechanical approach, An. Acad. Bras. Cienc., 82, 25, 10.1590/S0001-37652010000100004
2002, Designation: C 512 – 02
Vandamme, 2008
fib special activity group, 2013, XXXI, 402
Fischer-Cripps, 2009
Chen, 2017, Duality between creep and relaxation of a cement paste at different levels of relative humidity: Characterization by microindentation and analytical modeling, J. Nanomech. Micromech., 7, 10.1061/(ASCE)NM.2153-5477.0000128
Salençon, 2009
Pichler, 2009, Upscaling of viscoelastic properties of highly-filled composites: investigation of matrix–inclusion-type morphologies with power-law viscoelastic material response, Compos. Sci. Technol., 69, 2410, 10.1016/j.compscitech.2009.06.008
Stehfest, 1970, Algorithm 368: Numerical inversion of Laplace transforms [D5], Commun. ACM, 13, 47, 10.1145/361953.361969
Sanahuja, 2008
2002, Designation: C469 – 14
Vandamme, 2012, Quantifying plasticity-independent creep compliance and relaxation of viscoelastoplastic materials under contact loading, J. Mater. Res., 27, 302, 10.1557/jmr.2011.302
Maso, 1996
Sorelli, 2008, The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques, Cem. Concr. Res., 38, 1447, 10.1016/j.cemconres.2008.09.002
Wei, 2017, Indentation creep of cementitious materials: Experimental investigation from nano to micro length scales, Constr. Build. Mater., 143, 222, 10.1016/j.conbuildmat.2017.03.126
Shahidi, 2014, Viscous interfaces as source for material creep: A continuum micromechanics approach, Eur. J. Mech. A Solids, 45, 41, 10.1016/j.euromechsol.2013.11.001
Hanson, 1953
Zhang, 2014, Long-term creep properties of cementitious materials: Comparing microindentation testing with macroscopic uniaxial compressive testing, Cem. Concr. Res., 58, 89, 10.1016/j.cemconres.2014.01.004