Wet creep of hardened hydraulic cements — Example of gypsum plaster and implication for hydrated Portland cement

Cement and Concrete Research - Tập 63 - Trang 67-74 - 2014
Edgar Alejandro Pachon-Rodriguez1, Emmanuel Guillon2, Geert Houvenaghel2, Jean Colombani1
1Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5306, Domaine scientifique de la Doua, F-69622 Villeurbanne cedex, France
2Lafarge Centre de Recherche, 95, rue du Montmurier, BP 15, F-38291 Saint Quentin Fallavier cedex, France

Tài liệu tham khảo

Pachon-Rodriguez, 2011, Pressure solution as origin of the humid creep of a mineral material, Phys. Rev. E., 84, 066121, 10.1103/PhysRevE.84.066121 Chen, 2010, A hierarchical study of the mechanical properties of gypsum, J. Mater. Sci., 45, 4444, 10.1007/s10853-010-4527-z Chappuis, 1999, A model for a better understanding of the cohesion of hardened hydraulic materials, Colloids Surf. A, 156, 223, 10.1016/S0927-7757(99)00075-8 Gartner, 2009, Cohesion and expansion in polycrystalline solids formed by hydration reactions — the case of gypsum plasters, Cem. Concr. Res., 39, 289, 10.1016/j.cemconres.2009.01.008 Sâadaoui, 2005, Internal friction study of water effect on set plaster, J. Eur. Ceram. Soc., 25, 3281, 10.1016/j.jeurceramsoc.2004.07.035 Badens, 1999, Relation between Young's modulus of set plaster and complete wetting of grain boundaries by water, Colloids Surf. A, 156, 373, 10.1016/S0927-7757(99)00097-7 Coquard, 1994, Water and solvent effects on the strength of plaster, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31, 517, 10.1016/0148-9062(94)90153-8 Andrews, 1946, The effect of water contents on the strength of calcium sulfate plaster products, J. Soc. Chem. Ind., 5, 125, 10.1002/jctb.5000650501 Sattler, 1974, Elastic and plastic deformations of plaster units under uniaxial compressive stress, Mater. Struct., 7, 159 Craker, 1962, Plastic deformation of gypsum, Nature, 193, 672, 10.1038/193672a0 Gratier, 2013, The role of pressure solution creep in the ductility of the earth's upper crust, Adv. Geophys., 54, 47, 10.1016/B978-0-12-380940-7.00002-0 deMeer, 1995, Creep of wet gypsum aggregates under hydrostatic loading conditions, Tectonophysics, 245, 171, 10.1016/0040-1951(94)00233-Y deMeer, 1997, Uniaxial compaction creep of wet gypsum aggregates, J. Geophys. Res., 102, 875, 10.1029/96JB02481 Murat, 1974, Corrélation texture cristalline-propriétés mécaniques de plâtres durcis. Etude préliminaire, Mater. Struct., 8, 377 Lewry, 1994, The setting of gypsum plaster. Part II. The development of microstructure and strength, J. Mater. Sci., 29, 5524, 10.1007/BF00349943 Renard, 2001, Enhanced pressure solution creep rates induced by clay particles: experimental evidence in salt aggregates, Geophys. Res. Lett., 28, 1295, 10.1029/2000GL012394 Raj, 1982, Creep in polycrystalline aggregates by matter transport through a liquid phase, J. Geophys. Res., 87, 4731, 10.1029/JB087iB06p04731 Meille, 2003, Mechanisms of crack propagation in dry plaster, J. Eur. Ceram. Soc., 23, 3105, 10.1016/S0955-2219(03)00094-3 Lasaga, 2003, A model for crystal dissolution, Eur. J. Mineral., 15, 603, 10.1127/0935-1221/2003/0015-0603 Colombani, 2008, Measurement of the pure dissolution rate constant of a mineral in water, Geochim. Cosmochim. Acta, 72, 5634, 10.1016/j.gca.2008.09.007 Colombani, 2013, Dissolution measurement free from mass transport, Pure Appl. Chem., 85, 61, 10.1351/PAC-CON-12-03-07 Colombani, 2007, Holographic interferometry study of the dissolution and diffusion of gypsum in water, Geochim. Cosmochim. Acta, 71, 1913, 10.1016/j.gca.2007.01.012 Pachon-Rodriguez, 2013, Pure dissolution kinetics of anhydrite and gypsum in inhibiting aqueous salt solutions, AIChE J., 59, 1622, 10.1002/aic.13922 Dysthe, 2002, Universal scaling in transient creep, Phys. Rev. Lett., 89, 246102, 10.1103/PhysRevLett.89.246102 Hoxha, 2006, Deformation of natural gypsum rock: mechanisms and questions, Eng. Geol., 86, 1, 10.1016/j.enggeo.2006.04.002 Allen, 2007, Composition and density of nanoscale calcium–silicate–hydrate in cement, Nat. Mater., 6, 311, 10.1038/nmat1871 Pellenq, 2009, A realistic molecular model of cement hydrates, Proc. Natl. Acad. Sci. U. S. A., 106, 16102, 10.1073/pnas.0902180106 Gmira, 2004, Microscopic physical basis of the poromechanical behavior of cement-based materials, Mater. Struct., 37, 3, 10.1007/BF02481622 Jennings, 2004, Colloid model of C–S–H and implications to the problem of creep and shrinkage, Mater. Struct., 37, 59, 10.1007/BF02481627 Vandamme, 2009, Nanogranular origin of concrete creep, Proc. Natl. Acad. Sci. U. S. A., 106, 10552, 10.1073/pnas.0901033106 Bazant, 2001, Prediction of concrete creep and shrinkage: past, present and future, Tectonophysics, 203, 27 Acker, 2004, Swelling, shrinkage and creep: a mechanical approach to cement hydration, Mater. Struct., 37, 237, 10.1617/14161 Sanahuja, 2010, Creep of a C–S–H gel: a micromechanical approach, Int. J. Multiscale Comput. Eng., 357 Grasley, 2007, Constitutive modeling of the aging viscoelastic properties of Portland cement paste, Mech. Time-Depend. Mater., 11, 175, 10.1007/s11043-007-9043-4 Suter, 2010, Constitutive model for aging thermoviscoelasticity of reacting concrete ii: results and discussion, Mech. Time-Depend. Mater., 14, 291, 10.1007/s11043-010-9107-8 Chen, 2004, Solubility and structure of calcium silicate hydrate, Cem. Concr. Res., 34, 1499, 10.1016/j.cemconres.2004.04.034 Baur, 2004, Dissolution–precipitation behaviour of ettringite, monosulfate, and calcium silicate hydrate, Cem. Concr. Res., 34, 341, 10.1016/j.cemconres.2003.08.016