Is long-term autogenous shrinkage a creep phenomenon induced by capillary effects due to self-desiccation?

Cement and Concrete Research - Tập 108 - Trang 186-200 - 2018
Abudushalamu Aili1, Matthieu Vandamme2, Jean-Michel Torrenti3, Benoit Masson4
1Université Paris-Est, Laboratoire Navier (UMR 8205), CNRS, École des Ponts ParisTech, IFSTTAR, Marne-la-Vallée F-77455, France
2Université Paris-Est, Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR, Marne-la-Vallée F-77455, France
3Université Paris-Est, IFSTTAR, 14 Boulevard Newton, Champs-sur-Marne F-77420, France
4EDF-DIN-SEPTEN, Division GS - Groupe Génie Civil, 12-14 Avenue Dutriévoz, Villeurbanne F-69628, France

Tài liệu tham khảo

1995, Creep and shrinkage prediction model for analysis and design of concrete structures-model B3, Mater. Struct., 28, 357, 10.1007/BF02473152 Benboudjema, 2007, A viscoelastic approach for the assessment of the drying shrinkage behaviour of cementitious materials, Mater. Struct., 40, 163, 10.1617/s11527-006-9126-8 2015, RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete: material model and structural analysis, Mater. Struct., 48, 753, 10.1617/s11527-014-0485-2 2004 2008 2013, Model Code for Concrete Structures 2010, Ernst and Sohn De Larrard, 1990, Creep and shrinkage of high-strength field concretes, ACI Spec. Publ., 121, 577 Gopalakrishnan, 1968 Bažant, 2011, Pervasiveness of excessive segmental bridge deflections: wake-up call for creep, ACI Struct. J., 108, 766 Le Roy, 1995 Le Roy, 2017, Long term basic creep behavior of high performance concrete: data and modelling, Mater. Struct., 50, 85, 10.1617/s11527-016-0948-8 Torrenti, 2017, Analysis of some basic creep tests on concrete and their implications for modeling, Struct. Concr., 1 Aili, 2016, Time evolutions of non-aging viscoelastic Poisson's ratio of concrete and implications for creep of C-S-H, Cem. Concr. Res., 90, 144, 10.1016/j.cemconres.2016.09.014 Zhang, 2014, Long-term creep properties of cementitious materials: comparing microindentation testing with macroscopic uniaxial compressive testing, Cem. Concr. Res., 58, 89, 10.1016/j.cemconres.2014.01.004 Frech-Baronet, 2017, New evidences on the effect of the internal relative humidity on the creep and relaxation behaviour of a cement paste by micro-indentation techniques, Cem. Concr. Res., 91, 39, 10.1016/j.cemconres.2016.10.005 Vandamme, 2013, Nanoindentation investigation of creep properties of calcium silicate hydrates, Cem. Concr. Res., 52, 38, 10.1016/j.cemconres.2013.05.006 Mazloom, 2004, Effect of silica fume on mechanical properties of high-strength concrete, Cem. Concr. Compos., 26, 347, 10.1016/S0958-9465(03)00017-9 Brooks, 1983, Properties of ultra-high-strength concrete containing a superplasticizer, Mag. Concr. Res., 35, 205, 10.1680/macr.1983.35.125.205 Brooks, 1984, Accuracy of estimating long-term strains in concrete, Mag. Concr. Res., 36, 131, 10.1680/macr.1984.36.128.131 Hua, 1995, Analyses and models of the autogenous shrinkage of hardening cement paste: I. Modelling at macroscopic scale, Cem. Concr. Res., 25, 1457, 10.1016/0008-8846(95)00140-8 Lura, 2003, Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms, Cem. Concr. Res., 33, 223, 10.1016/S0008-8846(02)00890-6 Gawin, 2006, Hygro-thermo-chemo-mechanical modelling of concrete at early ages and beyond. Part II: shrinkage and creep of concrete, Int. J. Numer. Methods Eng., 67, 332, 10.1002/nme.1636 Lin, 2008, Modeling shrinkage of portland cement paste, ACI materials journal, 105, 302 Stefan, 2009, Behavior of concrete at early stage using percolation and Biot's Theory Grasley, 2011, Desiccation shrinkage of cementitious materials as an aging, poroviscoelastic response, Cem. Concr. Res., 41, 77, 10.1016/j.cemconres.2010.09.008 Wyrzykowski, 2011, Modeling of internal curing in maturing mortar, Cem. Concr. Res., 41, 1349, 10.1016/j.cemconres.2011.04.013 Zhang, 2012, Micromechanical modeling on autogenous and drying shrinkages of concrete, Constr. Build. Mater., 29, 230, 10.1016/j.conbuildmat.2011.09.022 Luan, 2013, Enhanced shrinkage model based on early age hydration and moisture status in pore structure, J. Adv. Concr. Technol., 11, 1, 10.3151/jact.11.360 Ulm, 2015, Shrinkage due to colloidal force interactions, 13 Abuhaikal, 2016 Abuhaikal, 2018, Le Châtelier's conjecture: measurement of colloidal eigenstresses in chemically reactive materials, J. Mech. Phys. Solids, 10.1016/j.jmps.2017.12.012 Hajibabaee, 2016, Mechanisms of dimensional instability caused by differential drying in wet cured cement paste, Cem. Concr. Res., 79, 151, 10.1016/j.cemconres.2015.09.007 Li, 2017, Irreversible desiccation shrinkage of cement paste caused by cement grain dissolution and hydrate precipitation, Mater. Struct., 50, 104, 10.1617/s11527-016-0974-6 Bažant, 2008, Comprehensive database on concrete creep and shrinkage, ACI Mater. J., 105, 635 Shritharan, 1989 Vandamme, 2009, Nanogranular origin of concrete creep, Proc. Natl. Acad. Sci., 106, 10552, 10.1073/pnas.0901033106 Christensen, 1982 Mori, 1973, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metall., 21, 571, 10.1016/0001-6160(73)90064-3 Zaoui, 1999 Bernard, 2003, A multiscale micromechanics-hydration model for the early-age elastic properties of cement-based materials, Cem. Concr. Res., 33, 1293, 10.1016/S0008-8846(03)00039-5 Pichler, 2007, A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials, Eng. Fract. Mech., 74, 34, 10.1016/j.engfracmech.2006.01.034 Sanahuja, 2007, Modelling elasticity of a hydrating cement paste, Cem. Concr. Res., 37, 1427, 10.1016/j.cemconres.2007.07.003 Pichler, 2011, Upscaling quasi-brittle strength of cement paste and mortar: a multi-scale engineering mechanics model, Cem. Concr. Res., 41, 467, 10.1016/j.cemconres.2011.01.010 Sevostianov, 2014, On some controversial issues in effective field approaches to the problem of the overall elastic properties, Mech. Mater., 69, 93, 10.1016/j.mechmat.2013.09.010 Auliac, 2000 Powers, 1947, 669 Taylor, 1997 Waller, 1999, Relations entre composition des bétons, exothermie en cours de prise et résistance en compression Mehta, 2006 Zhang, 2014 Hanson, 1953 Browne, 1967, Properties of concrete in reactor vessels, 11 Rostasy, 1973, Beitrag zur Klarung des Zussammenhanges von Kriechen und Relaxation bei Normal-beton Kommendant, 1976, Study of concrete properties for prestressed concrete reactor vessels Takahashi, 1980, Study on time-dependent behavior of high strength concrete (Part 1) - Application of the Time - Dependent Linear Viscoelasticity Theory of Concrete Creep Behavior Kawasumi, 1982, Creep of concrete at elevated temperatures, Part 3, The Influence of Ages at Loading and Water/Cement Ratios Bryant, 1987, Creep, shrinkage-size, and age at loading effects, Mater. J., 84, 117 De Larrard, 1988 Mazzotti, 2005, A comparison between long-term properties of self-compacting concretes and normal vibrated concretes with same strength, 523 Mu, 2009, Designing concrete with special shrinkage and creep requirements Dormieux, 2006 Coussy, 2011 Jensen, 1995, Thermodynamic limitation of self-desiccation, Cem. Concr. Res., 25, 157, 10.1016/0008-8846(94)00123-G Powers, 1948, A discussion of cement hydration in relation to the curing of concrete, vol. 27 Flatt, 2011, Why alite stops hydrating below 80% relative humidity, Cem. Concr. Res., 41, 987, 10.1016/j.cemconres.2011.06.001 Baroghel-Bouny, 1994 Jensen, 1996, Autogenous deformation and change of the relative humidity in silica fume-modified cement paste, ACI Mater. J., 93, 539 Jensen, 1999, Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste, Cem. Concr. Res., 29, 567, 10.1016/S0008-8846(99)00021-6 Persson, 1997, Moisture in concrete subjected to different kinds of curing, Mater. Struct., 30, 533, 10.1007/BF02486397 Kim, 1999, Moisture diffusion of concrete considering self-desiccation at early ages, Cem. Concr. Res., 29, 1921, 10.1016/S0008-8846(99)00192-1 Yssorche-Cubaynes, 1999, La microfissuration d’autodessiccation et la durabilité des BHP et BTHP, Mater. Struct., 32, 14, 10.1007/BF02480407 Jiang, 2005, Autogenous relative humidity change and autogenous shrinkage of high-performance cement pastes, Cem. Concr. Res., 35, 1539, 10.1016/j.cemconres.2004.06.028 Zhutovsky, 2013, Hydration kinetics of high-performance cementitious systems under different curing conditions, Mater. Struct., 46, 1599, 10.1617/s11527-012-0001-5 Wyrzykowski, 2016, Effect of relative humidity decrease due to self-desiccation on the hydration kinetics of cement, Cem. Concr. Res., 85, 75, 10.1016/j.cemconres.2016.04.003 Aili, 2017 Köhler, 1936, The nucleus in and the growth of hygroscopic droplets, Trans. Faraday Soc., 32, 1152, 10.1039/TF9363201152 Yang, 1999, Inner relative humidity and degree of saturation in high-performance concrete stored in water or salt solution for 2 years, Cem. Concr. Res., 29, 45, 10.1016/S0008-8846(98)00174-4 Yang, 2004, Self-desiccation mechanism of high-performance concrete, J. Zheijang Univ. Sci. A, 5, 1517, 10.1631/jzus.2004.1517 Chen, 2013, Prediction of self-desiccation in low water-to-cement ratio pastes based on pore structure evolution, Cem. Concr. Res., 49, 38, 10.1016/j.cemconres.2013.03.013 Hu, 2017 Jennings, 2000, A model for the microstructure of calcium silicate hydrate in cement paste, Cem. Concr. Res., 30, 101, 10.1016/S0008-8846(99)00209-4 Ghabezloo, 2010, Association of macroscopic laboratory testing and micromechanics modelling for the evaluation of the poroelastic parameters of a hardened cement paste, Cem. Concr. Res., 40, 1197, 10.1016/j.cemconres.2010.03.016 Ulm, 2005, Experimental microporomechanics, 207 Pichler, 2008, Consistency of homogenization schemes in linear poroelasticity, C.R. Mec., 336, 636, 10.1016/j.crme.2008.06.003 Pichler, 2010, Estimation of influence tensors for eigenstressed multiphase elastic media with nonaligned inclusion phases of arbitrary ellipsoidal shape, J. Eng. Mech., 136, 1043, 10.1061/(ASCE)EM.1943-7889.0000138 Coussy, 2009, Prediction of drying shrinkage beyond the pore isodeformation assumption, J. Mech. Mater. Struct., 4, 263, 10.2140/jomms.2009.4.263 Tazawa, 1993, Autogenous shrinkage of concrete and its importance in concrete technology, 159 Tazawa, 1995, Influence of cement and admixture on autogenous shrinkage of cement paste, Cem. Concr. Res., 25, 281, 10.1016/0008-8846(95)00010-0 Weiss, 1999, The influence of a shrinkage reducing admixture on early-age shrinkage behavior of high performance concrete, vol. 2, 1418 Brooks, 2001, Effect of metakaolin on creep and shrinkage of concrete, Cem. Concr. Compos., 23, 495, 10.1016/S0958-9465(00)00095-0 Lee, 2003, Autogenous shrinkage of high-performance concrete containing fly ash, Mag. Concr. Res., 55, 507, 10.1680/macr.2003.55.6.507 Zhang, 2003, Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete, Cem. Concr. Res., 33, 1687, 10.1016/S0008-8846(03)00149-2 Vidal, 2005, Creep and shrinkage of self-compacting concrete and comparative study with model code, 541 Lee, 2006, Evaluation of a basic creep model with respect to autogenous shrinkage, Cem. Concr. Res., 36, 1268, 10.1016/j.cemconres.2006.02.011 Muller, 2012, Densification of C-S-H measured by 1H NMR relaxometry, J. Phys. Chem. C, 117, 403, 10.1021/jp3102964 Muller, 2013, Use of bench-top NMR to measure the density, composition and desorption isotherm of C-S-H in cement paste, Microporous Mesoporous Mater., 178, 99, 10.1016/j.micromeso.2013.01.032 Königsberger, 2016, Densification of CSH is mainly driven by available precipitation space, as quantified through an analytical cement hydration model based on NMR data, Cem. Concr. Res., 88, 170, 10.1016/j.cemconres.2016.04.006