Quantifying plasticity-independent creep compliance and relaxation of viscoelastoplastic materials under contact loading

Journal of Materials Research - Tập 27 - Trang 302-312 - 2012
Matthieu Vandamme1,2, Catherine A. Tweedie3, Georgios Constantinides4, Franz-Josef Ulm1, Krystyn J. Van Vliet3
1Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, USA
2Laboratoire Navier (École des Ponts ParisTech; Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux; Centre National de la Recherche Scientifique), Université Paris-Est, Marne-la-Vallée, France
3Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, USA
4Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Lemesos, Cyprus

Tóm tắt

Here we quantify the time-dependent mechanical properties of a linear viscoelastoplastic material under contact loading. For contact load relaxation, we showed that the relaxation modulus can be measured independently of concurrent plasticity exhibited during the loading phase. For indentation creep, we showed that the rate of change of the contact creep compliance $$\dot L(t)$$ can be measured independently of any plastic deformation exhibited during loading through $$\dot L(t) = 2a(t)\dot h(t)/P_{\max } $$ , where a(t) is the contact radius, h(t) is the displacement of the contact probe, and Pmax is the constant applied load during the creep phase. These analytical relations were compared with numerical simulations of conical indentation creep for a viscoelastoplastic material and validated against sharp indentation creep experiments conducted on polystyrene. The derived relations enable extraction of viscoelastic material characteristics, even if sharp probes confer concurrent plasticity, applicable for a general axisymmetric contact probe geometry and a general time-independent plasticity.

Tài liệu tham khảo

L.A. Galin: Contact Problems in the Theory of Elasticity (Gostekhizdat, Moscow, Russia, 1953). I.N. Sneddon: The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47 (1965). E.H. Lee and J.R.M. Radok: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960). M. Vandamme and F-J. Ulm: Viscoelastic solutions for conical indentation. Int. J. Solids Struct. 43, 3142 (2006). C.A. Tweedie and K.J. Van Vliet: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21, 1576 (2006). R.M. Christensen: Theory of Viscoelasticity: An Introduction (Academic Press, NY, 1982). Y-T. Cheng and F. Yang: Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instrumented indentation using axisymmetric indenters of power-law profiles. J. Mater. Res. 24, 3013 (2009). S. Shimizu, T. Yanagimoto, and M. Sakai: Pyramidal indentation load-depth curve of viscoelastic materials. J. Mater. Res. 14, 4075 (1999). M.L. Oyen and R.F. Cook: Load-displacement behavior during sharp indentation of viscous-elastic-plastic materials. J. Mater. Res. 18, 139 (2003). M.L. Oyen, R.F. Cook, J.A. Emerson, and N.R. Moody: Indentation responses of time-dependent films on stiff substrates. J. Mater. Res. 19, 2487 (2004). R.F. Cook and M.L. Oyen: Nanoindentation behavior and mechanical properties measurement of polymeric materials. Int. J. Mater. Res. 98, 370 (2007). S.E. Olesiak, M.L. Oyen, and V.L. Ferguson: Viscous-elastic-plastic behavior of bone using Berkovich nanoindentation. Mech. Time-Depend. Mater. 14, 111 (2010). C.Y. Zhang, Y.W. Zhang, K.Y. Zeng, and L. Shen: Nanoindentation of polymers with a sharp indenter. J. Mater. Res. 20, 1597 (2005). C.Y. Zhang, Y.W. Zhang, K.Y. Zeng, and L. Shen: Characterization of mechanical properties of polymers by nanoindentation tests. Philos. Mag. 86, 4487 (2006). G.M. Pharr and A. Bolshakov: Understanding nanoindentation unloading curves. J. Mater. Res. 17, 2660 (2002). C.Y. Zhang, Y.W. Zhang, K.Y. Zeng, L. Shen, and Y.Y. Wang: Extracting the elastic and viscoelastic properties of a polymeric film using a sharp indentation relaxation test. J. Mater. Res. 21, 2991 (2006). R. Seltzer and Y-W. Mai: Depth-sensing indentation of linear viscoelastic-plastic solids: A simple method to determine creep compliance. Eng. Fract. Mech. 75, 4852 (2008). L. Anand and N.M. Ames: On modeling the micro-indentation response of an amorphous polymer. Int. J. Plast. 22, 1123 (2006). S. Hartmann, J. Gibmeier, and B. Scholtes: Experiments and material parameter identification using finite elements. Uniaxial tests and validation using instrumented indentation tests. Exp. Mech. 46, 5 (2006). E. Tyulyukovskiy and N. Huber: Identification of viscoplastic material parameters from spherical indentation data: Part I. Neural networks. J. Mater. Res. 21, 664 (2006). G. Rauchs and J. Bardon: Identification of elasto-viscoplastic material parameters by indentation testing and combined finite element modelling and numerical optimization. Finite Elem. Anal. Des. 47, 653 (2011). K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, United Kingdom, 1985). P.L. Larsson, A.E. Giannakopoulos, E. Soderlund, D.J. Rowcliffe, and R. Vestergaard: Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221 (1996). M. Ashby: Materials Selection in Mechanical Design, 3rd ed. (Butterworth-Heinemann, Oxford, United Kingdom, 2004), p. 58. J.C. Hay, A. Bolshakov, and G.M. Pharr: A critical examination of the fundamental relations used in the analysis of nanoindentation data. J. Mater. Res. 14, 2296 (1999). Y-T. Cheng and C-M. Cheng: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng., R 44, 91 (2004). W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004). S.I. Bulychev, V. Alekhin, M.K. Shorshorov, A. Ternovskii, and G. Shnyrev: Determination of Young’s modulus according to indentation diagram. Ind. Lab. (Transl: Zavodskaya Laboratoria) 41, 1137 (1975). W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992). C.A. Tweedie and K.J. Van Vliet: On the indentation recovery and fleeting hardness of polymers. J. Mater. Res. 21, 3029 (2006).