Nanoindentation investigation of creep properties of calcium silicate hydrates

Cement and Concrete Research - Tập 52 - Trang 38-52 - 2013
M. Vandamme1, F.-J. Ulm2
1Université Paris-Est, Laboratoire Navier, (UMR 8205),CNRS, ENPC, IFSTTAR, F-77455 Marne-la-Vallée, France
2MIT, Department of Civil and Environmental Engineering, Cambridge, MA 02139, United States

Tài liệu tham khảo

Bažant, 2011, Pervasiveness of excessive segmental bridge deflections: wake-up call for creep, ACI Struct. J., 108, 767 Powers, 1968, The thermodynamics of volume change and creep, Mater. Struct., 1, 487 Feldman, 1968, A model for hydrated Portland cement paste as deduced from sorption-length change and mechanical properties, Mater. Struct., 1, 509 Bažant, 1972, Thermodynamics of interacting continua with surfaces and creep analysis of concrete structures, Nucl. Eng. Des., 20, 477, 10.1016/0029-5493(72)90124-0 Bentur, 1978, Creep and drying shrinkage of calcium silicate pastes II. Induced microstructural and chemical changes, Cem. Concr. Res., 8, 721, 10.1016/0008-8846(78)90081-9 Neville, 1983 Bažant, 1997, Microprestress-solidification theory for concrete creep. 2. Algorithm and verification, J. Eng. Mech. ASCE, 123, 1195, 10.1061/(ASCE)0733-9399(1997)123:11(1195) Vandamme, 2009, Nanogranular origin of concrete creep, Proc. Natl. Acad. Sci. U. S. A., 106, 10552, 10.1073/pnas.0901033106 Wittmann, 1982, Creep and shrinkage mechanisms, in Creep and Shrinkage in Concrete Structures, 129 Bažant, 1984, Double-power logarithmic law for concrete creep, Cem. Concr. Res., 14, 793, 10.1016/0008-8846(84)90004-8 Bernard, 2003, Volume and deviator creep of calcium-leached cement-based materials, Cem. Concr. Res., 33, 1127, 10.1016/S0008-8846(03)00021-8 Bažant, 1995, Creep and shrinkage prediction model for analysis and design of concrete structures - model B3, Mater. Struct., 28, 357, 10.1007/BF02473152 Ulm, 1999, Creep and shrinkage coupling: new review of some evidence, Rev. Fr. de Génie Civil, 3, 21 Allen, 2007, Composition and density of nanoscale calcium-silicate-hydrate in cement, Nat. Mater., 6, 311, 10.1038/nmat1871 Pellenq, 2009, A realistic molecular model of cement hydrates, Proc. Natl. Acad. Sci. U. S. A., 106, 16102, 10.1073/pnas.0902180106 Šmilauer, 2010, Identification of viscoelastic C-S-H behavior in mature cement paste by FFT-based homogenization method, Cem. Concr. Res., 40, 197, 10.1016/j.cemconres.2009.10.003 Alizadeh, 2010, Viscoelastic nature of calcium silicate hydrate, Cem. Concr. Compos., 32, 369, 10.1016/j.cemconcomp.2010.02.008 Pichler, 2009, Identification of logarithmic-type creep of calcium-silicate-hydrates by means of nanoindentation, Strain, 45, 17, 10.1111/j.1475-1305.2008.00429.x Acker, 2001, Micromechanical analysis of creep and shrinkage mechanisms, 15 Constantinides, 2003, On the use of nanoindentation for cementitious materials, Mater. Struct., 36, 191, 10.1007/BF02479557 Constantinides, 2004, The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling, Cem. Concr. Res., 34, 67, 10.1016/S0008-8846(03)00230-8 Constantinides, 2007, The nanogranular nature of C-S-H, J. Mech. Phys. Solids, 55, 64, 10.1016/j.jmps.2006.06.003 Ulm, 2007, Statistical indentation techniques for hydrated nanocomposites: concrete, bone, and shale, J. Am. Ceram. Soc., 90, 2677, 10.1111/j.1551-2916.2007.02012.x DeJong, 2007, The nanogranular behavior of C-S-H at elevated temperatures (up to 700 degrees C), Cem. Concr. Res., 37, 1, 10.1016/j.cemconres.2006.09.006 Zhu, 2007, Nanoindentation mapping of mechanical properties of cement paste and natural rocks, Mater. Charact., 58, 1189, 10.1016/j.matchar.2007.05.018 Mondal, 2007, A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials, Cem. Concr. Res., 37, 1440, 10.1016/j.cemconres.2007.07.001 Němeček, 2009, Creep effects in nanoindentation of hydrated phases of cement pastes, Mater. Charact., 60, 1028, 10.1016/j.matchar.2009.04.008 Davydov, 2011, Critical aspects of nano-indentation technique in application to hardened cement paste, Cem. Concr. Res., 41, 20, 10.1016/j.cemconres.2010.09.001 Miller, 2008, Surface roughness criteria for cement paste nanoindentation, Cem. Concr. Res., 38, 467, 10.1016/j.cemconres.2007.11.014 Bulychev, 1975, Determination of Young's modulus according to indentation diagram, Zavod. Lab., 41, 1137 Cheng, 1999, Scaling relationships in conical indentation of elastic perfectly plastic solids, Int. J. Solids Struct., 36, 1231, 10.1016/S0020-7683(97)00349-1 Ganneau, 2006, Dual-indentation technique for the assessment of strength properties of cohesive-frictional materials, Int. J. Solids Struct., 43, 1727, 10.1016/j.ijsolstr.2005.03.035 Cariou, 2008, Hardness-packing density scaling relations for cohesive-frictional porous materials, J. Mech. Phys. Solids, 56, 924, 10.1016/j.jmps.2007.06.011 Bobko, 2011, The nanogranular origin of friction and cohesion in shale-A strength homogenization approach to interpretation of nanoindentation results, Int. J. Numer. Anal. Methods Geomech., 35, 1854, 10.1002/nag.984 Oliver, 1992, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564, 10.1557/JMR.1992.1564 Constantinides, 2005, Invariant mechanical properties of calcium-silicate-hydrates (C-S-H) in cement-based materials: instrumented nanoindentation and microporomechanical modeling Feng, 2002, Effects of creep and thermal drift on modulus measurement using depth-sensing indentation, J. Mater. Res., 17, 660, 10.1557/JMR.2002.0094 Vandamme, 2006, Viscoelastic solutions for conical indentation, Int. J. Solids Struct., 43, 3142, 10.1016/j.ijsolstr.2005.05.043 Vandamme, 2012, Quantifying plasticity-independent creep compliance and relaxation of viscoelastoplastic materials under contact loading, J. Mater. Res., 27, 302, 10.1557/jmr.2011.302 Vandamme, 2010, Nanogranular packing of C-S-H at substochiometric conditions, Cem. Concr. Res., 40, 14, 10.1016/j.cemconres.2009.09.017 Chen, 2010, A coupled nanoindentation/SEM-EDS study on low water/cement ratio Portland cement paste: Evidence for C-S-H/Ca(OH)2 nanocomposites, J. Am. Ceram. Soc., 93, 1484 Gathier, 2008 Constantinides, 2006, Grid indentation analysis of composite microstructure and mechanics: principles and validation, Mater. Sci. Eng. A, 430, 189, 10.1016/j.msea.2006.05.125 Randall, 2009, Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces, J. Mater. Res., 24, 679, 10.1557/jmr.2009.0149 Nohava, 2011, Novel ultra nanoindentation method with extremely low thermal drift: principle and experimental results, J. Mater. Res., 24, 873, 10.1557/jmr.2009.0114 Le Roy, 1996 Acker, 2001, Creep and shrinkage of concrete: physical origins and practical measurements, Nucl. Eng. Des., 203, 143, 10.1016/S0029-5493(00)00304-6 Barthélémy, 2005 Tabor, 1951 Atkins, 1965, Plastic indentation in metals with cones, J. Mech. Phys. Solids, 13, 149, 10.1016/0022-5096(65)90018-9 Lambe, 1969 Masoero, 2012, Nanostructure and nanomechanics of cement: polydisperse colloidal packing, Phys. Rev. Lett., 109, 155503, 10.1103/PhysRevLett.109.155503 Lee, 1955, Stress analysis in visco-elastic bodies, Q. Appl. Math., 13, 183, 10.1090/qam/69741 Radok, 1957, Visco-elastic stress analysis, Q. Appl. Math., 15, 198, 10.1090/qam/92453 Lee, 1960, The contact problem for viscoelastic bodies, J. Appl. Mech., 27, 438, 10.1115/1.3644020 Nixon, 1965