Wiley
1462-2912
1462-2920
Cơ quản chủ quản: WILEY , Wiley-Blackwell Publishing Ltd
Các bài báo tiêu biểu
Microbial community analysis via high‐throughput sequencing of amplified
The accelerated growth of finfish aquaculture has resulted in a series of developments detrimental to the environment and human health. The latter is illustrated by the widespread and unrestricted use of prophylactic antibiotics in this industry, especially in developing countries, to forestall bacterial infections resulting from sanitary shortcomings in fish rearing. The use of a wide variety of antibiotics in large amounts, including non‐biodegradable antibiotics useful in human medicine, ensures that they remain in the aquatic environment, exerting their selective pressure for long periods of time. This process has resulted in the emergence of antibiotic‐resistant bacteria in aquaculture environments, in the increase of antibiotic resistance in fish pathogens, in the transfer of these resistance determinants to bacteria of land animals and to human pathogens, and in alterations of the bacterial flora both in sediments and in the water column. The use of large amounts of antibiotics that have to be mixed with fish food also creates problems for industrial health and increases the opportunities for the presence of residual antibiotics in fish meat and fish products. Thus, it appears that global efforts are needed to promote more judicious use of prophylactic antibiotics in aquaculture as accumulating evidence indicates that unrestricted use is detrimental to fish, terrestrial animals, and human health and the environment.
The human gut microbiota ferments dietary non‐digestible carbohydrates into short‐chain fatty acids (SCFA). These microbial products are utilized by the host and propionate and butyrate in particular exert a range of health‐promoting functions. Here an overview of the metabolic pathways utilized by gut microbes to produce these two SCFA from dietary carbohydrates and from amino acids resulting from protein breakdown is provided. This overview emphasizes the important role played by cross‐feeding of intermediary metabolites (in particular lactate, succinate and 1,2‐propanediol) between different gut bacteria. The ecophysiology, including growth requirements and responses to environmental factors, of major propionate and butyrate producing bacteria are discussed in relation to dietary modulation of these metabolites. A detailed understanding of SCFA metabolism by the gut microbiota is necessary to underpin effective strategies to optimize SCFA supply to the host.
Naturally occurring populations of bacteria and archaea are vital to life on the earth and are of enormous practical significance in medicine, engineering and agriculture. However, the rules governing the formation of such communities are still poorly understood, and there is a need for a usable mathematical description of this process. Typically, microbial community structure is thought to be shaped mainly by deterministic factors such as competition and niche differentiation. Here we show, for a wide range of prokaryotic communities, that the relative abundance and frequency with which different taxa are observed in samples can be explained by a neutral community model (NCM). The NCM, which is a stochastic, birth–death immigration process, does not explicitly represent the deterministic factors and therefore cannot be a complete or literal description of community assembly. However, its success suggests that chance and immigration are important forces in shaping the patterns seen in prokaryotic communities.
Despite recognition of the importance of soil bacteria to terrestrial ecosystem functioning there is little consensus on the factors regulating belowground biodiversity. Here we present a multi‐scale spatial assessment of soil bacterial community profiles across Great Britain (> 1000 soil cores), and show the first landscape scale map of bacterial distributions across a nation. Bacterial diversity and community dissimilarities, assessed using terminal restriction fragment length polymorphism, were most strongly related to soil pH providing a large‐scale confirmation of the role of pH in structuring bacterial taxa. However, while α diversity was positively related to pH, the converse was true for β diversity (between sample variance in α diversity). β diversity was found to be greatest in acidic soils, corresponding with greater environmental heterogeneity. Analyses of clone libraries revealed the pH effects were predominantly manifest at the level of broad bacterial taxonomic groups, with acidic soils being dominated by few taxa (notably the group 1 Acidobacteria and Alphaproteobacteria). We also noted significant correlations between bacterial communities and most other measured environmental variables (soil chemistry, aboveground features and climatic variables), together with significant spatial correlations at close distances. In particular, bacterial and plant communities were closely related signifying no strong evidence that soil bacteria are driven by different ecological processes to those governing higher organisms. We conclude that broad scale surveys are useful in identifying distinct soil biomes comprising reproducible communities of dominant taxa. Together these results provide a baseline ecological framework with which to pursue future research on both soil microbial function, and more explicit biome based assessments of the local ecological drivers of bacterial biodiversity.
Members of the genus
Arbuscular mycorrhizal (AM) fungi and bacteria can interact synergistically to stimulate plant growth through a range of mechanisms that include improved nutrient acquisition and inhibition of fungal plant pathogens. These interactions may be of crucial importance within sustainable, low‐input agricultural cropping systems that rely on biological processes rather than agrochemicals to maintain soil fertility and plant health. Although there are many studies concerning interactions between AM fungi and bacteria, the underlying mechanisms behind these associations are in general not very well understood, and their functional properties still require further experimental confirmation. Future mycorrhizal research should therefore strive towards an improved understanding of the functional mechanisms behind such microbial interactions, so that optimized combinations of microorganisms can be applied as effective inoculants within sustainable crop production systems. In this context, the present article seeks to review and discuss the current knowledge concerning interactions between AM fungi and plant growth‐promoting rhizobacteria, the physical interactions between AM fungi and bacteria, enhancement of phosphorus and nitrogen bioavailability through such interactions, and finally the associations between AM fungi and their bacterial endosymbionts. Overall, this review summarizes what is known to date within the present field, and attempts to identify promising lines of future research.
In recent years, honeybees (