Wiley
0570-0833
Cơ quản chủ quản: N/A
Các bài báo tiêu biểu
Trong khi phần lớn hóa học hữu cơ truyền thống tập trung vào việc chuẩn bị và nghiên cứu tính chất của các phân tử
A crystal of an organic compound is the ultimate supermolecule, and its assembly, governed by chemical and geometrical factors, from individual molecules is the perfect example of solid‐state molecular recognition. Implicit in the supramolecular description of a crystal structure is the fact that molecules in a crystal are held together by noncovalent interactions. The need for rational approaches towards solid‐state structures of fundamental and practical importance has led to the emergence of crystal engineering, which seeks to understand intermolecular interactions and recognition phenomena in the context of crystal packing. The aim of crystal engineering is to establish reliable connections between molecular and supramolecular structure on the basis of intermolecular interactions. Ideally one would like to identify substructural units in a target supermolecule that can be assembled from logically chosen precursor molecules. Indeed, crystal engineering
Inorganic metal–oxygen cluster anions form a class of compounds that is unique in its topological and electronic versatility and is important in several disciplines. Names such as
Starburst dendrimers are three‐dimensional, highly ordered oligomeric and polymeric compounds formed by reiterative reaction sequences starting from smaller molecules—“initiator cores” such as ammonia or pentaerythritol. Protecting group strategies are crucial in these syntheses, which proceed via discrete “Aufbau” stages referred to as generations. Critical molecular design parameters (CMDPs) such as size, shape, and surface chemistry may be controlled by the reactions and synthetic building blocks used. Starburst dendrimers can mimic certain properties of micelles and liposomes and even those of biomolecules and the still more complicated, but highly organized, building blocks of biological systems. Numerous applications of these compounds are conceivable, particularly in mimicking the functions of large biomolecules as drug carriers and immunogens. This new branch of “supramolecular chemistry” should spark new developments in both organic and macromolecular chemistry.
Can binding sites be produced in organic or inorganic polymers—similar to those in antibodies—which are able to recognize molecules and which may have catalytic action? In this article we review a method, analogous to a mechanism of antibody formation proposed earlier, by which in the presence of interacting monomers a cross‐linked polymer is formed around a molecule that acts as a template. After removal of the template, an imprint containing functional groups capable of chemical interaction remains in the polymer. The shape of the imprint and the arrangement of the functional groups are complementary to the structure of the template. If chiral templates are used, the success of the imprinting process can be assessed by the ability of the polymer to resolve the racemate of the template molecule. Through optimization of the process has led to chromatographic separation factors of α = 4–8, and to base line separations. There is also great interest in the surface imprinting of solid materials and monolayers. In all cases, the structure of the polymeric matrix in the imprinted materials and the function of the binding groups are of crucial importance. The mechanisms of imprinting and molecular recognition of substrates are by now well understood. A large number of potential applications for this class materials are being intensively developed, for example in the chromatogrphic resolution of recemates, and as artificial antibodies, chemosensors, and selective catalysts. The use of similarly produced materials as enzyme models is also of great interest.
The topological analysis of chiral molecular models has provided the framework of a general system for the specification of their chirality. The application, made in and before 1956, of this system to organic‐chemical configurations is generally retained, but is redefined with respect to certain types of structure, largely in the light of experience gained since 1956 in the Beilstein Institute and elsewhere. The system is now extended to deal, on the one hand, with organic‐chemical conformations, and, on the other, with inorganic‐chemical configurations to ligancy six. Matters arising in connexion with the transference of chiral specifications from model to name are considered, notably that of the symbiosis in nomenclature of expressions of the general system and of systems of confined scope.
For corrigendum see DOI:
The proton occupies a special position as a promoter and mediator in chemical reactions occurring in solution. Many reactions in organic chemistry are catalysed by acids or bases; likewise, most enzymes contain active groups which promote acid‐base catalysis. To understand the reaction mechanisms involved, it is necessary to identify the elementary steps as well as their course in time. Systematic investigation of these elementary steps as well as their course in time. Systematic investigation of these elementary steps has become possible only with the development of new methods for studying very fast reactions. The present paper reviews the information obtained in this type of investigation. The result is a relatively complete picture of the elementary proton transfer mechanisms and a comprehensive description of the modes and laws of acid‐base and enzymatic catalysis.
The chemistry of N‐heterocyclic carbenes has long been limited to metal coordination compounds derived from azolium precursors, a development that was started by Öfele and Wanzlick in 1968. Since free carbenes are now available through the work of Arduengo (1991), a renaissance in this little‐recognized area of chemistry has occurred. A leading motive is the advantages of N‐heterocyclic carbenes as ligands in organometallic catalysts, where they extend the scope of application reached by phosphanes (functionalized, chiral, water‐soluble, and immobilized derivatives). The present review summarizes the state of the art with regard to synthesis, structure, bonding theory, metal coordination chemistry, and catalysis. Chelating, functionalized, chiral, and immobilized ligands can be generated and attached to metal centers in straightforward procedures under mild conditions. A wealth of new chemistry is thus opened. It is also shown how carbenes derived from imidazoles and triazoles behave as ligands in catalysis. It is reasonable to assume that N‐heterocyclic carbenes surpass the ubiquitous phosphanes as ligands in a number of organometallic catalytic reactions.