Polyoxometalate Chemistry: An Old Field with New Dimensions in Several Disciplines

Wiley - Tập 30 Số 1 - Trang 34-48 - 1991
Michael T. Pope1,2,3, Achim Müller1,4,3
1Achim Müller, Fakultät für Chemie der Universität, Postfach 8640, W-4800 Bielefeld 1 (FRG)
2Department of Chemistry, Georgetown University, Washington, DC 20057, USA
3Michael T. Pope, Department of Chemistry, Georgetown University, Washington, DC 20057 (USA)
4Fakultät für Chemie der Universität, Postfach 8640, W-4800 Bielefeld 1 (FRG)

Tóm tắt

Abstract

Inorganic metal–oxygen cluster anions form a class of compounds that is unique in its topological and electronic versatility and is important in several disciplines. Names such as Berzelius, Werner, and Pauling appear in the early literature of the field. These clusters (so‐called isopoly‐ and heteropolyanions) contain highly symmetrical core assemblies of MOx units (M = V, Mo, W) and often adopt quasi‐spherical structures based on Archimedean and Platonic solids of considerable topological interest. Understanding the driving force for the formation of high‐nuclearity clusters is still a formidable challenge. Polyoxoanions are important models for elucidating the biological and catalytic action of metal–chalcogenide clusters, since metal–metal interactions in the oxo clusters range from very weak (virtually none) to strong (metal–metal bonding) and can be controlled by choice of metal (3d, 4d, 5d), electron population (degree of reduction), and extent of protonation. Mixed‐valence vanadates, in particular, show novel capacities for unpaired electrons, and the magnetic properties of these complexes may be tuned in a stepwise manner. Many vanadates also act as cryptands and clathrate hosts not only for neutral molecules and cations but also for anions, whereby a remarkable “induced self‐assembly process” often occurs. Polyoxometalates have found applications in analytical and clinical chemistry, catalysis (including photocatalysis), biochemistry (electron transport inhibition), medicine (antitumoral, antiviral, and even anti‐HIV activity), and solid‐state devices. These fields are the focus of much current research. Metal–oxygen clusters are also present in the geosphere and possibly in the biosphere. The mixed–valence vanadates contribute to an understanding of the extremely versatile geochemistry of the metal. The significant differences between the chemistry of the polyoxoanions and that of the thioanions of the same elements is of relevance to heterogeneous catalysis, bioinorganic chemistry, and veterinary medicine.

Từ khóa


Tài liệu tham khảo

Souchay P., 1969, Ions Minéraux Condensés

10.1007/978-3-662-12004-0

10.1126/science.228.4699.533

Pope M. T., 1987, Comprehensive Coordination Chemistry, 1023

10.1002/andp.18260820402

Gmelin Handbuch der Anorganischen Chemie

System‐No. 53 (Molybdän) 1935; System‐No. 54 (Wolfram) 1933.

Hein F., 1950, Chemische Koordinationslehre

10.1021/ja01385a002

10.1038/131908b0

10.1098/rspa.1934.0035

Evans H. T., 1971, Perspect. Struct. Chem., 4, 1

Fuchs J., 1973, Z. Naturforsch., 28, 389, 10.1515/znb-1973-7-803

10.1021/ic50191a021

10.1021/ja00495a070

10.1021/ja00337a004

10.1021/ic00201a013

10.1021/ja00258a025

10.1021/ic00260a021

10.1021/ic00246a028

10.1021/ic00214a010

10.1021/ic00222a029

10.1351/pac198759111529

10.1021/ja00157a063

Ma L., J. Chem. Soc. Chem. Commun., 1989, 440

10.1021/ic00324a002

10.1002/ange.19901020132

10.1002/anie.199000701

10.1021/ic50023a039

Burtseva K. G., 1978, Dokl. Akad. Nauk SSSR, 243, 104

1978, Sov. Phys. Dokl. (Engl. Transl.), 23, 784

Sergienko V. S., 1979, Koord. Khim., 5, 936

1979, Sov. J. Coord. Chem. (Engl. Transl.), 5, 740

See [1b] p. 130.

10.1016/S0277-5387(00)80616-6

10.1021/ic00301a004

10.1002/ange.19901020123

10.1002/anie.199000881

The { MoO3}‐containing species is mentioned in footnote [5].

10.1021/ic50077a048

Moore P. B., 1974, Neues Jahrb. Mineral. Abh., 120, 205

10.1002/zfch.19870270502

10.1021/ic00307a001

Hayashi Y., Chem. Lett., 1989, 425

10.1021/ic00333a002

10.1021/ja00445a052

10.1021/ja00492a088

10.1021/ja00415a050

10.1021/ja00310a033

10.1107/S0567740882007018

10.1016/S0065-2792(08)60073-4

(b) “Early Transition Metal Polyoxoanions” Inorg. Synth.27(1990) Chap. 3 p. 71.

10.1021/ja00321a064

Krebs B., 1981, Transition Metal Chemistry, 91

10.1021/om00098a003

Katsoulis D. E., J. Chem. Soc. Chem. Commun., 1986, 1186

10.1021/ja00184a065

10.1021/ic50114a057

A.Müller V.Wittneben unpublished.

10.1016/0021-9517(88)90092-9

10.1007/978-94-009-9076-0_12

10.1016/0020-1650(80)80056-0

10.1021/ja00375a044

10.1021/ja00284a028

Piepgrass K., J. Chem. Soc. Chem. Commun., 1989, 10

10.1021/ja00351a028

So H., 1987, Bull. Korean Chem. Soc., 8, 384

Kazanskii L. P., 1979, Dokl. Adad. Nauk SSSR, 244, 372

1979, Dokl. Chem. (Engl. Transl.), 244, 36

10.1021/ja00270a040

10.1021/ja00231a019

10.1021/ba-1990-0226.ch021

N.Casan‐Pastor Ph. D. Thesis Georgetown University. Washington DC.1988;

1989, Diss. Abstr. Int. B, 50, 1397

10.1021/ja00292a059

10.1016/0022-1902(76)80361-2

10.1021/ic50212a018

10.1021/ja00239a058

10.1021/ic50019a003

10.1002/ange.19800921107

10.1002/anie.198008751

Wexell D. R., Chem. Commun., 1971, 886

10.1021/ic50133a051

10.1021/ic50144a042

10.1021/ja00198a013

K.Piepgrass Ph. D. Thesis Georgetown University Washington DC 1989;

1990, Diss. Abstr. Int. B, 50, 5059

Petrukhina M. A., 1988, Koord. Khim., 14, 1519

1988, Sov. J. Coord. Chem. (Engl. Transl.), 14, 855

10.1021/om00132a032

10.1007/BFb0116437

10.1021/ja00263a046

10.1021/ja00268a071

10.1021/ic00220a036

10.1021/ja00295a019

10.1021/ic00265a004

Evans H. T., J. Chem. Soc. Dalton Trans., 1986, 2699

10.1021/ja00426a081

10.1016/0022-1902(80)80321-6

T. L.Jorris Ph. D. Thesis Georgetown University Washington DC 1987;

1989, Diss. Abstr. Int. B, 49, 2639

10.1021/ic00347a052

10.1021/ic00230a014

10.1021/ja00197a077

10.1002/ange.19901020818

10.1002/anie.199009261

10.1021/ic50040a004

A.Mülleret al. unpublished results;

A.Müller J.Döring M. I.Khan V.Wittneben Angew. Chem.103(1991) in press;

Angew. Chem. Int. Ed. Engl.30(1991) in press;

A.Müller J.Döring H.Bögge J. Chem. Soc. Chem. Commun. in press;

A.Müller R.Rohlfing H.Bögge J.Döring M.Penk Angew. Chem.103(1991) in press;

Angew. Chem. Int. Ed. Engl.30(1991) in press.

10.1021/ja00479a083

Müller A., 1988, Chimia, 42, 300

10.1002/ange.19870991023

10.1002/anie.198710451

10.1002/ange.19881001224

10.1002/anie.198817191

10.1021/ic00131a079

von Mangoldt H., 1990, Höhere Mathematik

10.1007/978-3-322-87601-0

Šaškin J., 1989, Ecken, Flächen, Kanten

10.4153/CJM-1966-021-8

10.1007/978-3-642-68992-5

Osmond F., 1887, Bull. Soc. Chim. Fr., 47, 745

10.1016/0039-9140(81)80071-9

10.1007/BF02687736

10.1016/0304-4203(86)90045-9

Semenovskaya E. N., 1986, Zh. Anal. Khim., 41, 1925

1986, J. Anal. Chem. USSR (Engl. Transl.), 41, 1339

Matheke M. L., 1987, Clin. Chem. (Winston‐Salem, NC), 33, 2109, 10.1093/clinchem/33.11.2109

10.1016/0003-2697(85)90511-1

Warnick G. R., 1982, Am. J. Clin. Pathol., 78, 718, 10.1093/ajcp/78.5.718

10.1021/ja00309a052

10.1021/jo00388a041

10.1080/01614948708078072

10.1080/00986448908940650

10.1016/S0167-2991(09)61302-1

10.1016/0021-9517(87)90207-7

10.1016/S0166-9834(00)80429-7

10.1016/0167-2738(88)90021-5

10.1021/om00099a037

10.1070/RC1987v056n09ABEH003304

10.1070/RC1987v056n09ABEH003304

10.1021/jo00280a029

10.1021/ja00304a019

10.1039/cs9891800001

10.1016/S0277-5387(00)84890-1

Faraj M., J. Chem. Soc. Chem. Commun., 1987, 1487

10.1016/0166-9834(83)80128-6

10.1039/9781847553140-00123

10.1007/978-94-009-1205-2

Moyes A. J., The Chemical Engineer, 1974, 84

10.1002/nadc.19880360216

Topsøe H., 1990, Catalysts in Petroleum Refining 1989

Knözinger H., 1988, Proc. Int. Congr. Catal. 9th, 5, 20

10.1016/0021-9517(89)90073-0

10.1016/0167-2738(84)90078-X

10.1111/j.1151-2916.1989.tb06159.x

Nakamura O., 1982, Prog. Batteries Sol. Cells, 4, 230

10.1039/f19888403941

Vlasov Yu. G., 1983, Elektrokhimiya, 19, 1049

10.1038/1811530a0

Ouahab L., 1988, C. R. Acad. Sci. Ser. 2, 307, 749

10.1063/1.97147

10.1016/S0769-2617(85)80114-3

DeMaster E. G., 1987, Biochem. Arch., 3, 301

10.1016/0305-0491(82)90510-7

10.1016/S0020-1693(00)83477-5

Bussereau F., 1988, Acta Virol. (Engl. Ed.), 32, 33

10.1007/BF01310854

10.1016/0167-4838(87)90186-5

Petrascheck W. E., 1982, Lagerstättenlehre

Rösler H. J., 1981, Lehrbuch der Mineralogie

Evans H. T., 1978, Handbook of Geochemistry

10.1128/JB.145.2.743-751.1981

10.1016/S0277-5387(00)84930-X

10.1002/ange.19810931106

10.1002/anie.198109341

Müller A., 1987, Comprehensive Coordination Chemistry

See [146] Chap. 16. 3.

10.1021/ja00364a074

10.1021/ic00220a008

That polyoxometalates form at all is evidence of metal–metal interactions. The observation of small (< 50 Hz) WW NMR coupling constants is a further argument.

Katsoulis D. E., J. Chem. Soc. Dalton Trans., 1989, 1483

10.1021/ja00489a048

10.1021/ja00497a057

10.1021/ja00251a015

Peacock R. D., J. Chem. Soc., 1836

10.1021/ic00189a005

10.1002/ange.19881001225

10.1002/anie.198817211

10.1107/S0567740879009390

10.1021/ja01015a067

Nishikawa T., Chem. Lett., 1975, 1185

10.1524/zkri.1976.143.jg.1

10.1246/bcsj.48.3146

10.1021/ja00184a028

Evans H. T., 1978, Am. Mineral., 63, 863

Johansson G., 1963, Ark. Kemi, 20, 305