Wiley
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
Investigation of receptor—ligand interactions remains an inexhaustible challenge for chemists and biologists. Structural exploration of biological receptors is the starting point for a better understanding of how they function. Photoaffinity labeling is a biochemical approach to identify and characterize receptors targeting further structural investigations. The primary structure of a receptor protein was typically obtained by reverse genetics after exhaustive purification and sequencing of the N‐terminal peptide, which allowed the design of the corresponding oligonucleotide probes. Synthesis of these oligonucleotide probes then led to identification of cDNA clones by hybridization. Following this strategy, several membrane neurotransmitter receptors and constituent polypeptides, present in very small quantities in the central nervous system, were identified and their sequence deduced from the cDNA sequence. Since photoaffinity labeling implies the formation of a covalent bond between a radiolabeled ligand analogue and a receptor binding site, it becomes theoretically possible to isolate and sequence radiolabeled peptides and then synthesize the corresponding oligonucleotide probes. Photoaffinity labeling might avoid the critical solubilization and purification steps of the classical approach. To our knowledge, no such example of primary structure determination based on photoaffinity labeling experiments has been reported. However, the extraordinary developments in gene cloning technologies, in particular homology cloning and expression cloning, have made this approach obsolete and raised the question of new perspectives for photoaffinity labeling technology. In this article we present an update on selected original developments, as well as new challenges for this method. Photoaffinity labeling not only gives access to structural elements but is also a potential tool for the investigation of functional aspects of biological receptors, for example their role in signal transduction mechanisms.
Glycopeptides are partial structures of the connecting regions of glycoproteins and, like these, always contain glycosidic bonds between the carbohydrate and peptide parts. Glycoproteins are not only widely distributed but are also decisive factors in post‐translational biological selectivity, especially in biological recognition. Targeted syntheses of glycopeptides require stereoselective formation of the glycosidic bonds between the carbohydrate and the peptide parts and protective group methods that enable selective deblocking of only one functional group in these polyfunctional molecules. These heavy demands have been met by the well‐established use of benzylic protective groups, which can be removed by hydrogenolysis, combined with the use of base‐labile 2‐phosphonioethoxycarbonyl (Peoc) or 9‐fluorenylmethoxycarbonyl (Fmoc) protective groups or of bromoethyl esters, which can be removed under neutral conditions. The acidolysis of
During recent decades it has become feasible to simulate the dynamics of molecular systems on a computer. The method of molecular dynamics (MD) solves
This review provides a personal account of the explorations of a research group in oligosaccharide and glycoconjugate construction. The journey began twenty years ago with the study of Diels–Alder reactions of complex dienes. By extending this methodology to aldehydo‐type heterodienophile equivalents, access to unnatural glycals was gained (LACDAC reaction). From this point a broad‐ranging investigation of the use of glycals in the synthesis of oligosaccharides and other glycoconjugates was begun. Mobilization of glycals both as glycosyl donors and glycosyl acceptors led to the strategy of glycal assembly. Several new glycosylation techniques were developed to provide practical underpinning for this logic of glycal assembly. Glycal‐based paradigms have been shown to be nicely adaptable to solid phase supported synthesis. Moreover, glycal assembly—both in solution and on solid phases—has been used to gain relatively concise and efficient entry to a variety of biologically interesting and potentially valuable constructs. Some of these syntheses, particularly in the field of tumor antigens, have led to novel compounds which are in the final stages of preclinical assessment. This review presents an account of the chemical reasoning at the center of the program.
- 1
- 2
- 3
- 4
- 5
- 6
- 10