Journal of Innate Immunity
1662-8128
1662-811X
Thụy Sĩ
Cơ quản chủ quản: KARGER , S. Karger AG
Các bài báo tiêu biểu
The autophagy pathway is an essential component of host defense against viral infection, orchestrating pathogen degradation (xenophagy), innate immune signaling, and certain aspects of adaptive immunity. Single autophagy proteins or cassettes of the core autophagy machinery can also function as antiviral factors independently of the canonical autophagy pathway. Moreover, to survive and propagate within the host, viruses have evolved a variety of strategies to evade autophagic attack and manipulate the autophagy machinery for their own benefit. This review summarizes recent advances in understanding the antiviral and proviral roles of autophagy and previously unappreciated autophagy-independent functions of autophagy-related genes.
Tế bào hồng cầu tổng hợp các thành phần chính của hệ thống tương tự bổ thể của muỗi, nhưng vai trò của chúng trong việc kích hoạt các phản ứng chống Plasmodium chưa được xác định rõ. Hiệu ứng của việc kích hoạt tín hiệu <i>Toll</i> trong tế bào hồng cầu lên sự sống sót của <i>Plasmodium</i> đã được nghiên cứu bằng cách chuyển tế bào hồng cầu hoặc huyết thanh không tế bào từ muỗi cho mà tại đó chất ức chế <i>cactus</i> đã bị làm câm. Những lần chuyển này đã làm tăng cường đáng kể khả năng miễn dịch chống Plasmodium, chỉ ra rằng tế bào hồng cầu là những nhân tố hoạt động trong việc kích hoạt hệ thống tương tự bổ thể, thông qua một hoặc nhiều yếu tố hiệu quả được điều chỉnh bởi con đường <i>Toll</i>. Phân tích so sánh các quần thể tế bào hồng cầu giữa các giống muỗi nhạy cảm G3 và giống kháng L3-5 <i>Anopheles gambiae</i> không cho thấy sự khác biệt đáng kể nào trong điều kiện cơ bản hoặc khi đáp ứng với nhiễm <i>Plasmodium berghei</i>. Phản ứng của muỗi nhạy cảm với các loài <i>Plasmodium</i> khác nhau cho thấy các động học tương tự sau khi nhiễm với <i>P. berghei,</i><i>P. yoelii</i> hoặc <i>P. falciparum,</i> nhưng mức độ đáp ứng tiên tiến mạnh mẽ hơn ở các cặp muỗi-ký sinh trùng ít tương thích hơn. Các con đường tín hiệu <i>Toll, Imd,</i><i>STAT</i> hay <i>JNK</i> không cần thiết cho sự sản xuất các yếu tố biệt hoá tế bào hồng cầu (HDF) nhằm đáp ứng với nhiễm <i>P. berghei</i>, nhưng sự gián đoạn của <i>Toll, STAT</i> hoặc <i>JNK</i> làm gián đoạn sự biệt hóa tế bào hồng cầu đáp ứng với HDF. Chúng tôi kết luận rằng tế bào hồng cầu là các nhân tố chủ chốt trung gian phản ứng chống Plasmodium của <i>A. gambiae</i>.
Neutrophils use intricate mechanisms for capturing and killing invading microorganisms. One mechanism entails the release of relaxed chromatin from the cell. Microbes are trapped by the extracellular chromatin and exposed to high local concentrations of bactericidal compounds. We examine the regulation of chromatin release by testing the contribution of microtubules and the actin cytoskeleton to the deployment of neutrophil extracellular traps (NETs). Incubation of human neutrophils with nocodazole, a tubulin polymerization inhibitor, or cytochalasin D, an inhibitor of actin filamentation, severely diminished the ability of neutrophils to respond to LPS by releasing chromatin from the cells. In addition, pretreatment of neutrophils with M1/70, a monoclonal antibody to the Mac-1 integrin adhesion receptor, drastically reduced the deployment of chromatin into NETs. Analysis of histone deimination, the conversion of arginine to citrulline in 3 of the 4 core histones by peptidylarginine deiminase 4, revealed that the treatments inhibiting NET formation also reduced histone deimination. Our data indicate that NET formation requires functional tubulin and actin filaments and responds to engagement of Mac-1 integrins. Because histone deimination coincides with the release of NETs, we propose that these events represent overlapping mechanisms of neutrophil responses to infections.
Neutrophils are recruited to a site of infection or injury where they help initiate the acute inflammatory response. In instances of sterile inflammation, where no microbial threats are present, this neutrophil recruitment is mediated by the release of danger signals or damage-associated molecular patterns (DAMPs) from disrupted cells and tissues. At basal state, many of these substances are sequestered and remain hidden within the cell, but are released following the rupture of the plasma membrane. In other instances, these DAMPs are undetected by the innate immune system unless chemically or proteolytically modified by tissue damage. DAMPs may be directly detected by neutrophils themselves and modulate their recruitment to sites of damage or, alternatively, they can act on other cell types which in turn facilitate the arrival of neutrophils to a site of injury. In this review, we outline the direct and indirect effects of a number of DAMPs, notably extracellular ATP, mitochondrial formylated peptides and mitochondrial DNA, all of which are released by necrotic cells. We examine the effect of these substances on the recruitment and behaviour of neutrophils to sites of sterile injury. We also highlight research which suggests that neutrophils are actively involved in triggering the resolution phase of an inflammatory response. This review brings to light a growing body of work that demonstrates that the release of DAMPs and the ensuing influx of neutrophils plays an important functional role in the inflammatory response, even when no pathogens are present.
Natural killer (NK) cells are a key component of innate immunity involved not only in the elimination of virus-infected or tumor cells but also in the regulation of the immune response by producing cytokines and chemokines that can activate other cellular components of innate and adaptive immunity. NK cell subsets are differentially affected by aging. Whereas CD56<sup>bright</sup> cells are decreased in healthy elderly individuals, the CD56<sup>dim</sup> subset is expanded. The expression of CD57, a marker of highly differentiated NK cells, is increased in the elderly; this supports the notion that a remodeling process of NK cell subsets occurs in aging with a gradual decrease in more immature CD56<sup>bright</sup> NK cells and an increase in highly differentiated CD56<sup>dim</sup> CD57+ NK cells. This NK cell redistribution can explain many of the phenotypic and functional changes in NK cells associated with healthy aging such as decreased proliferation and the maintenance of CD16-dependent cytotoxicity.
In vertebrates, the conversion of fibrinogen into fibrin is an essential process that underlies the establishment of the supporting protein framework required for coagulation. In invertebrates, fibrinogen-domain-containing proteins play a role in the defense response generated against pathogens; however, they do not function in coagulation, suggesting that this role has been recently acquired. Molecules containing fibrinogen motifs have been identified in numerous invertebrate organisms, and most of these molecules known to date have been linked to defense. Moreover, recent genome projects of invertebrate animals have revealed surprisingly high numbers of fibrinogen-like loci in their genomes, suggesting important and perhaps diverse functions of fibrinogen-like proteins in invertebrates. The ancestral role of molecules containing fibrinogen-related domains (FReDs) with immunity is the focus of this review, with emphasis on specific FReDs called fibrinogen-related proteins (FREPs) identified from the schistosome-transmitting mollusc <i>Biomphalaria glabrata</i>. Herein, we outline the range of invertebrate organisms FREPs can be found in, and detail the roles these molecules play in defense and protection against infection.
Innate immunity is a rapidly evolving field with novel cell types and molecular pathways being discovered and paradigms changing continuously. Innate and adaptive immune responses are traditionally viewed as separate from each other, but emerging evidence suggests that they overlap and mutually interact. Recently discovered cell types, particularly innate lymphoid cells and myeloid-derived suppressor cells, are gaining increasing attention. Here, we summarize and highlight current concepts in the field, focusing on innate immune cells as well as the inflammasome and DNA sensing which appear to be critical for the activation and orchestration of innate immunity, and may provide novel therapeutic opportunities for treating autoimmune, autoinflammatory, and infectious diseases.
Autophagy (macroautophagy) is often defined as a degradative process and a tributary of the lysosomal pathway. In this context, autophagy carries out cytoplasmic quality control and nutritional functions by removing defunct or disused organelles, particulate targets and invading microbes, and by bulk digestion of the cytoplasm. However, recent studies indicate that autophagy surprisingly affects multiple secretory pathways. Autophagy participates in extracellular delivery of a number of cytosolic proteins that do not enter the conventional secretory pathway via the Golgi apparatus but are instead unconventionally secreted directly from the cytosol. In mammalian cells, a prototypical example of this manifestation of autophagy is the unconventional secretion of a major proinflammatory cytokine, IL-1β. This review examines the concept of secretory autophagy and compares and contrasts the role of autophagy in the secretion of IL-1α and IL-1β. Although IL-1α and IL-1β have closely related extracellular inflammatory functions, they differ in intracellular activation, secretory mechanisms and how they are affected by autophagy. This example indicates that the role of autophagy in secretion is more complex, at least in mammalian cells, than the simplistic view that autophagosomes provide carriers for unconventional secretion of cytosolic proteins.
In most animals there is a need to quickly prevent the loss of blood or equivalent fluids through inflicted injuries. In invertebrates with an open circulatory system (and sometimes a hydroskeleton as well) these losses may otherwise soon be fatal. Also, there is a need to prevent microbes that have gained access to the body through the wound from disseminating throughout the open circulatory system. Therefore, many invertebrates possess a coagulation system to prevent such accidents from having too serious consequences. In this review we discuss recent developments in a few animals – mainly arthropods – where more detailed data are available. It is likely, however, that corresponding systems are present in most phyla, but this is still unchartered territory.
A sufficient response of neutrophil granulocytes stimulated by interleukin (IL)-8 is vital during systemic inflammation, for example, in sepsis or severe trauma. Moreover, IL-8 is clinically used as biomarker of inflammatory processes. However, the effects of IL-8 on cellular key regulators of neutrophil properties such as the intracellular pH (pH<sub>i</sub>) in dependence of ion transport proteins and during inflammation remain to be elucidated. Therefore, we investigated in detail the fundamental changes in pH<sub>i</sub>, cellular shape, and chemotactic activity elicited by IL-8. Using flow cytometric methods, we determined that the IL-8-induced cellular activity was largely dependent on specific ion channels and transporters, such as the sodium-proton exchanger 1 (NHE1) and non-NHE1-dependent sodium flux. Exposing neutrophils in vitro to a proinflammatory micromilieu with N-formyl-Met-Leu-Phe, LPS, or IL-8 resulted in a diminished response regarding the increase in cellular size and pH. The detailed kinetics of the reduced reactivity of the neutrophil granulocytes could be illustrated in a near-real-time flow cytometric measurement. Last, the LPS-mediated impairment of the IL-8-induced response in neutrophils was confirmed in a translational, animal-free human whole blood model. Overall, we provide novel mechanistic insights for the interaction of IL-8 with neutrophil granulocytes and report in detail about its alteration during systemic inflammation.