Antioxidants

SCOPUS (2012-2023)SCIE-ISI

  2076-3921

 

  Thụy Sĩ

Cơ quản chủ quản:  MDPI , Multidisciplinary Digital Publishing Institute (MDPI)

Lĩnh vực:
Clinical BiochemistryFood ScienceMolecular BiologyCell BiologyPhysiologyBiochemistry

Các bài báo tiêu biểu

A Comprehensive Review on Lipid Oxidation in Meat and Meat Products
Tập 8 Số 10 - Trang 429
Rubén Domínguez, Mirian Pateiro, Mohammed Gagaoua, Francisco J. Barba, Wangang Zhang, José M. Lorenzo

Meat and meat products are a fundamental part of the human diet. The protein and vitamin content, as well as essential fatty acids, gives them an appropriate composition to complete the nutritional requirements. However, meat constituents are susceptible to degradation processes. Among them, the most important, after microbial deterioration, are oxidative processes, which affect lipids, pigments, proteins and vitamins. During these reactions a sensory degradation of the product occurs, causing consumer rejection. In addition, there is a nutritional loss that leads to the formation of toxic substances, so the control of oxidative processes is of vital importance for the meat industry. Nonetheless, despite lipid oxidation being widely investigated for decades, the complex reactions involved in the process, as well as the different pathways and factors that influenced them, make that lipid oxidation mechanisms have not yet been completely understood. Thus, this article reviews the fundamental mechanisms of lipid oxidation, the most important oxidative reactions, the main factors that influence lipid oxidation, and the routine methods to measure compounds derived from lipid oxidation in meat.

Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms
Tập 10 Số 2 - Trang 277
Swati Sachdev, Shamim Akhtar Ansari, Mohammad Israil Ansari, Masayuki Fujita, Mirza Hasanuzzaman

Climate change is an invisible, silent killer with calamitous effects on living organisms. As the sessile organism, plants experience a diverse array of abiotic stresses during ontogenesis. The relentless climatic changes amplify the intensity and duration of stresses, making plants dwindle to survive. Plants convert 1–2% of consumed oxygen into reactive oxygen species (ROS), in particular, singlet oxygen (1O2), superoxide radical (O2•–), hydrogen peroxide (H2O2), hydroxyl radical (•OH), etc. as a byproduct of aerobic metabolism in different cell organelles such as chloroplast, mitochondria, etc. The regulatory network comprising enzymatic and non-enzymatic antioxidant systems tends to keep the magnitude of ROS within plant cells to a non-damaging level. However, under stress conditions, the production rate of ROS increases exponentially, exceeding the potential of antioxidant scavengers instigating oxidative burst, which affects biomolecules and disturbs cellular redox homeostasis. ROS are similar to a double-edged sword; and, when present below the threshold level, mediate redox signaling pathways that actuate plant growth, development, and acclimatization against stresses. The production of ROS in plant cells displays both detrimental and beneficial effects. However, exact pathways of ROS mediated stress alleviation are yet to be fully elucidated. Therefore, the review deposits information about the status of known sites of production, signaling mechanisms/pathways, effects, and management of ROS within plant cells under stress. In addition, the role played by advancement in modern techniques such as molecular priming, systems biology, phenomics, and crop modeling in preventing oxidative stress, as well as diverting ROS into signaling pathways has been canvassed.

Zinc and Oxidative Stress: Current Mechanisms
Tập 6 Số 2 - Trang 24
Dilina N. Marreiro, Kyria Jayanne Clímaco Cruz, Jennifer Beatriz Silva Morais, Jéssica Batista Beserra, Juliana Soares Severo, Ana Paula de Oliveira

Oxidative stress is a metabolic dysfunction that favors the oxidation of biomolecules, contributing to the oxidative damage of cells and tissues. This consequently contributes to the development of several chronic diseases. In particular, zinc is one of the most relevant minerals to human health, because of its antioxidant properties. This review aims to provide updated information about the mechanisms involved in the protective role of zinc against oxidative stress. Zinc acts as a co-factor for important enzymes involved in the proper functioning of the antioxidant defense system. In addition, zinc protects cells against oxidative damage, acts in the stabilization of membranes and inhibits the enzyme nicotinamide adenine dinucleotide phosphate oxidase (NADPH-Oxidase). Zinc also induces the synthesis of metallothioneins, which are proteins effective in reducing hydroxyl radicals and sequestering reactive oxygen species (ROS) produced in stressful situations, such as in type 2 diabetes, obesity and cancer. Literature provides strong evidence for the role of zinc in the protection against oxidative stress in several diseases.

Targeting Oxidative Stress and Mitochondrial Dysfunction in the Treatment of Impaired Wound Healing: A Systematic Review
Tập 7 Số 8 - Trang 98
Maria Consolación Cano Sanchez, Steve Lancel, Éric Boulanger, Rémi Nevière

Wound healing is a well-tuned biological process, which is achieved via consecutive and overlapping phases including hemostasis, inflammatory-related events, cell proliferation and tissue remodeling. Several factors can impair wound healing such as oxygenation defects, aging, and stress as well as deleterious health conditions such as infection, diabetes, alcohol overuse, smoking and impaired nutritional status. Growing evidence suggests that reactive oxygen species (ROS) are crucial regulators of several phases of healing processes. ROS are centrally involved in all wound healing processes as low concentrations of ROS generation are required for the fight against invading microorganisms and cell survival signaling. Excessive production of ROS or impaired ROS detoxification causes oxidative damage, which is the main cause of non-healing chronic wounds. In this context, experimental and clinical studies have revealed that antioxidant and anti-inflammatory strategies have proven beneficial in the non-healing state. Among available antioxidant strategies, treatments using mitochondrial-targeted antioxidants are of particular interest. Specifically, mitochondrial-targeted peptides such as elamipretide have the potential to mitigate mitochondrial dysfunction and aberrant inflammatory response through activation of nucleotide-binding oligomerization domain (NOD)-like family receptors, such as the pyrin domain containing 3 (NLRP3) inflammasome, nuclear factor-kappa B (NF-κB) signaling pathway inhibition, and nuclear factor (erythroid-derived 2)-like 2 (Nrf2).

NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology
Tập 10 Số 6 - Trang 890
Annelise Vermot, Isabelle Petit-Härtlein, Susan M. E. Smith, Franck Fieschi

The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.

Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation
Tập 8 Số 3 - Trang 72
Fumiaki Ito, Yoko Sono, Tomoyuki Ito

Endothelial dysfunction is one of the initial steps in the pathogenesis of atherosclerosis and development of cardiovascular disease in patients with diabetes mellitus. Several risk factors are associated with endothelial dysfunction and atherosclerosis, such as hypertension, dyslipidaemia, inflammation, oxidative stress, and advanced glycation-end products. Among these risk factors, oxidative stress is the largest contributor to the formation of atherosclerotic plaques. Measurement of reactive oxygen species (ROS) is still difficult, and assays for the measurement of ROS have failed to show a consistent correlation between pathological states and oxidative stress. To solve this problem, this review summarizes the current knowledge on biomarkers of oxidative stress, especially lipid peroxidation, and discusses the roles of oxidative stress, as measured by indices of lipid peroxidation, in diabetes mellitus, atherosclerosis, and chronic inflammation.

Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins
Tập 7 Số 5 - Trang 66
Evangelos Zoidis, Isidoros Seremelis, Ν. Κοντόπουλος, Georgios P. Danezis

Unlike other essential trace elements that interact with proteins in the form of cofactors, selenium (Se) becomes co-translationally incorporated into the polypeptide chain as part of 21st naturally occurring amino acid, selenocysteine (Sec), encoded by the UGA codon. Any protein that includes Sec in its polypeptide chain is defined as selenoprotein. Members of the selenoproteins family exert various functions and their synthesis depends on specific cofactors and on dietary Se. The Se intake in productive animals such as chickens affect nutrient utilization, production performances, antioxidative status and responses of the immune system. Although several functions of selenoproteins are unknown, many disorders are related to alterations in selenoprotein expression or activity. Selenium insufficiency and polymorphisms or mutations in selenoproteins’ genes and synthesis cofactors are involved in the pathophysiology of many diseases, including cardiovascular disorders, immune dysfunctions, cancer, muscle and bone disorders, endocrine functions and neurological disorders. Finally, heavy metal poisoning decreases mRNA levels of selenoproteins and increases mRNA levels of inflammatory factors, underlying the antagonistic effect of Se. This review is an update on Se dependent antioxidant enzymes, presenting the current state of the art and is focusing on results obtained mainly in chicken.

The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations
Tập 9 Số 8 - Trang 709
Nabeelah Bibi Sadeer, Domenico Montesano, Stefania Albrizio, Gökhan Zengin, Mohamad Fawzi Mahomoodally

Currently, there is a growing interest in screening and quantifying antioxidants from biological samples in the quest for natural and effective antioxidants to combat free radical-related pathological complications. Antioxidant assays play a crucial role in high-throughput and cost-effective assessment of antioxidant capacities of natural products such as medicinal plants and food samples. However, several investigators have expressed concerns about the reliability of existing in vitro assays. Such concerns arise mainly from the poor correlation between in vitro and in vivo results. In addition, in vitro assays have the problem of reproducibility. To date, antioxidant capacities are measured using a panel of assays whereby each assay has its own advantages and limitations. This unparalleled review hotly disputes on in vitro antioxidant assays and elaborates on the chemistry behind each assay with the aim to point out respective principles/concepts. The following critical questions are also addressed: (1) What make antioxidant assays coloured? (2) What is the reason for working at a particular wavelength? (3) What are the advantages and limitations of each assay? and (4) Why is a particular colour observed in antioxidant–oxidant chemical reactions? Furthermore, this review details the chemical mechanism of reactions that occur in each assay together with a colour ribbon to illustrate changes in colour. The review ends with a critical conclusion on existing assays and suggests constructive improvements on how to develop an adequate and universal antioxidant assay.

Quantification of the Antioxidant Activity of Plant Extracts: Analysis of Sensitivity and Hierarchization Based on the Method Used
Tập 9 Số 1 - Trang 76
Natividad Chaves, Antonio Santiago, Juan Carlos Alías

Plants have a large number of bioactive compounds with high antioxidant activity. Studies for the determination of the antioxidant activity of different plant species could contribute to revealing the value of these species as a source of new antioxidant compounds. There is a large variety of in vitro methods to quantify antioxidant activity, and it is important to select the proper method to determine which species have the highest antioxidant activity. The aim of this work was to verify whether different methods show the same sensitivity and/or capacity to discriminate the antioxidant activity of the extract of different plant species. To that end, we selected 12 species with different content of phenolic compounds. Their extracts were analyzed using the following methods: 2,2-di-phenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, ferric reducing (FRAP) assay, Trolox equivalent antioxidant capacity (ABTS) assay, and reducing power (RP) assay. The four methods selected could quantify the antioxidant capacity of the 12 study species, although there were differences between them. The antioxidant activity values quantified through DPPH and RP were higher than the ones obtained by ABTS and FRAP, and these values varied among species. Thus, the hierarchization or categorization of these species was different depending on the method used. Another difference established between these methods was the sensitivity obtained with each of them. A cluster revealed that RP established the largest number of groups at the shortest distance from the root. Therefore, as it showed the best discrimination of differences and/or similarities between species, RP is considered in this study as the one with the highest sensitivity among the four studied methods. On the other hand, ABTS showed the lowest sensitivity. These results show the importance of selecting the proper antioxidant activity quantification method for establishing a ranking of species based on this parameter.

Oxidative Stress and the Use of Antioxidants in Stroke
Tập 3 Số 3 - Trang 472-501
Rachel Shirley, Emily Ord, Lorraine M. Work

Transient or permanent interruption of cerebral blood flow by occlusion of a cerebral artery gives rise to an ischaemic stroke leading to irreversible damage or dysfunction to the cells within the affected tissue along with permanent or reversible neurological deficit. Extensive research has identified excitotoxicity, oxidative stress, inflammation and cell death as key contributory pathways underlying lesion progression. The cornerstone of treatment for acute ischaemic stroke remains reperfusion therapy with recombinant tissue plasminogen activator (rt-PA). The downstream sequelae of events resulting from spontaneous or pharmacological reperfusion lead to an imbalance in the production of harmful reactive oxygen species (ROS) over endogenous anti-oxidant protection strategies. As such, anti-oxidant therapy has long been investigated as a means to reduce the extent of injury resulting from ischaemic stroke with varying degrees of success. Here we discuss the production and source of these ROS and the various strategies employed to modulate levels. These strategies broadly attempt to inhibit ROS production or increase scavenging or degradation of ROS. While early clinical studies have failed to translate success from bench to bedside, the combination of anti-oxidants with existing thrombolytics or novel neuroprotectants may represent an avenue worthy of clinical investigation. Clearly, there is a pressing need to identify new therapeutic alternatives for the vast majority of patients who are not eligible to receive rt-PA for this debilitating and devastating disease.