Antioxidants

  2076-3921

 

  Thụy Sĩ

Cơ quản chủ quản:  Multidisciplinary Digital Publishing Institute (MDPI) , MDPI

Lĩnh vực:
BiochemistryPhysiologyCell BiologyMolecular BiologyFood ScienceClinical Biochemistry

Phân tích ảnh hưởng

Thông tin về tạp chí

 

This journal focuses on new insight and ideas related to antioxidants. The scope includes but is not limited to the following: evaluation of in vivo and in vitro antioxidant capacity antioxidant metabolism in biological systems elucidation of antioxidant mechanisms pharmacodynamics and pharmacokinetics of natural antioxidants innovative techniques of antioxidant delivery and protocols for the extraction, isolation, structural characterization of new natural antioxidants natural or synthetic antioxidants and their relevance to health and disease relationships between antioxidant properties and human health promotion dietary antioxidants safe antioxidant preservatives for foods, fodder and cosmetic formulations industrial uses for preventing the oxidative degradation of polymers such as rubbers, plastics and adhesives

Các bài báo tiêu biểu

Measurement and Clinical Significance of Lipid Peroxidation as a Biomarker of Oxidative Stress: Oxidative Stress in Diabetes, Atherosclerosis, and Chronic Inflammation
Tập 8 Số 3 - Trang 72
Fumiaki Ito, Yoko Sono, Tomoyuki Ito
Endothelial dysfunction is one of the initial steps in the pathogenesis of atherosclerosis and development of cardiovascular disease in patients with diabetes mellitus. Several risk factors are associated with endothelial dysfunction and atherosclerosis, such as hypertension, dyslipidaemia, inflammation, oxidative stress, and advanced glycation-end products. Among these risk factors, oxidative stress is the largest contributor to the formation of atherosclerotic plaques. Measurement of reactive oxygen species (ROS) is still difficult, and assays for the measurement of ROS have failed to show a consistent correlation between pathological states and oxidative stress. To solve this problem, this review summarizes the current knowledge on biomarkers of oxidative stress, especially lipid peroxidation, and discusses the roles of oxidative stress, as measured by indices of lipid peroxidation, in diabetes mellitus, atherosclerosis, and chronic inflammation.
Oxidative Stress and Antioxidants in Neurodegenerative Disorders
Tập 12 Số 2 - Trang 517
Edward O. Olufunmilayo, Michelle B. Gerke-Duncan, R. M. Damian Holsinger
Neurodegenerative disorders constitute a substantial proportion of neurological diseases with significant public health importance. The pathophysiology of neurodegenerative diseases is characterized by a complex interplay of various general and disease-specific factors that lead to the end point of neuronal degeneration and loss, and the eventual clinical manifestations. Oxidative stress is the result of an imbalance between pro-oxidant species and antioxidant systems, characterized by an elevation in the levels of reactive oxygen and reactive nitrogen species, and a reduction in the levels of endogenous antioxidants. Recent studies have increasingly highlighted oxidative stress and associated mitochondrial dysfunction to be important players in the pathophysiologic processes involved in neurodegenerative conditions. In this article, we review the current knowledge of the general effects of oxidative stress on the central nervous system, the different specific routes by which oxidative stress influences the pathophysiologic processes involved in Alzheimer’s disease, Parkinson’s disease, Amyotrophic Lateral Sclerosis and Huntington’s disease, and how oxidative stress may be therapeutically reversed/mitigated in order to stall the pathological progression of these neurodegenerative disorders to bring about clinical benefits.
Bioactive Variability and In Vitro and In Vivo Antioxidant Activity of Unprocessed and Processed Flour of Nine Cultivars of Australian lupin Species: A Comprehensive Substantiation
Tập 9 Số 4 - Trang 282
Kishor Mazumder, Afia Nabila, Asma Aktar, Asgar Farahnaky
The aim of this present investigation was to analyze bioactive compounds, as well as demonstrate the antioxidant activities of nine cultivars of Australian lupin species accompanied by observing the effect of domestic heat processing on their antioxidant activities adopting in vivo and in vitro approaches. Gas chromatography mass spectroscopy (GC-MS) analysis was performed for profiling bioactive compounds present in lupin cultivars. Multiple assay techniques involving quantification of polyphenolics, flavonoids and flavonol, electron transfer (ET) based assay, hydrogen atom transfer (HAT)-based assay and in vivo assays were performed. The major compounds found were hexadecanoic acid methyl ester, 9,12-octadecadienoic acid methyl ester, methyl stearate, lupanine,13-docosenamide and 11-octadecenoic acid (Z)- methyl ester. Mandelup was found to show excellent antioxidant activity. Moreover, Jurien, Gunyidi and Barlock had strong antioxidant activity. Both positive and negative impacts of heat processing were observed on antioxidant activity. Heating and usage of excess water during processing were the key determinants of loss of antioxidants. Negligible loss of antioxidant activity was observed in most of the assays whereas inhibition of both lipid peroxidation (33.53%) and hemolysis of erythrocytes (37.75%) were increased after processing. In addition, in vitro and in vivo antioxidant assays are found to show statistically significant (* p < 0.05 and ** p < 0.01) results, which are supported by the presence of a number of antioxidant compounds in GC-MS analysis.
Modulation of Oxidative Stress by Ozone Therapy in the Prevention and Treatment of Chemotherapy-Induced Toxicity: Review and Prospects
Tập 8 Số 12 - Trang 588
Bernardino Clavo, Francisco Rodríguez‐Esparragón, Delvys Rodríguez‐Abreu, Gregorio Martı́nez-Sánchez, Pedro Llontop, David Aguiar, Leandro Fernández‐Pérez, Norberto Santana-Rodríguez
(1) Background: Cancer is one of the leading causes of mortality worldwide. Radiotherapy and chemotherapy attempt to kill tumor cells by different mechanisms mediated by an intracellular increase of free radicals. However, free radicals can also increase in healthy cells and lead to oxidative stress, resulting in further damage to healthy tissues. Approaches to prevent or treat many of these side effects are limited. Ozone therapy can induce a controlled oxidative stress able to stimulate an adaptive antioxidant response in healthy tissue. This review describes the studies using ozone therapy to prevent and/or treat chemotherapy-induced toxicity, and how its effect is linked to a modification of free radicals and antioxidants. (2) Methods: This review encompasses a total of 13 peer-reviewed original articles (most of them with assessment of oxidative stress parameters) and some related works. It is mainly focused on four drugs: Cisplatin, Methotrexate, Doxorubicin, and Bleomycin. (3) Results: In experimental models and the few existing clinical studies, modulation of free radicals and antioxidants by ozone therapy was associated with decreased chemotherapy-induced toxicity. (4) Conclusions: The potential role of ozone therapy in the management of chemotherapy-induced toxicity merits further research. Randomized controlled trials are ongoing.
Vitamin C in Plants: From Functions to Biofortification
Tập 8 Số 11 - Trang 519
Costantino Paciolla, Stefania Fortunato, Nunzio Dipierro, Annalisa Paradiso, Silvana De Leonardis, Linda Mastropasqua, Maria Concetta de Pinto
Vitamin C (l-ascorbic acid) is an excellent free radical scavenger, not only for its capability to donate reducing equivalents but also for the relative stability of the derived monodehydroascorbate radical. However, vitamin C is not only an antioxidant, since it is also a cofactor for numerous enzymes involved in plant and human metabolism. In humans, vitamin C takes part in various physiological processes, such as iron absorption, collagen synthesis, immune stimulation, and epigenetic regulation. Due to the functional loss of the gene coding for l-gulonolactone oxidase, humans cannot synthesize vitamin C; thus, they principally utilize plant-based foods for their needs. For this reason, increasing the vitamin C content of crops could have helpful effects on human health. To achieve this objective, exhaustive knowledge of the metabolism and functions of vitamin C in plants is needed. In this review, the multiple roles of vitamin C in plant physiology as well as the regulation of its content, through biosynthetic or recycling pathways, are analyzed. Finally, attention is paid to the strategies that have been used to increase the content of vitamin C in crops, emphasizing not only the improvement of nutritional value of the crops but also the acquisition of plant stress resistance.
Antioxidant, Biomolecule Oxidation Protective Activities of Nardostachys jatamansi DC and Its Phytochemical Analysis by RP-HPLC and GC-MS
Tập 4 Số 1 - Trang 185-203
Sakina Razack, Hemanth Kumar Kandikattu, Ilaiyaraja Nallamuthu, Mahadeva Naika, Farhath Khanum
The study aimed at analyzing the metabolite profile of Nardostachys jatamansi using RP-HPLC, GC-MS and also its antioxidant, biomolecule protective and cytoprotective properties. The 70% ethanolic extract of Nardostachys jatamansi (NJE) showed the presence of polyphenols and flavonoids (gallic acid, catechin, chlorogenic acid, homovanillin, epicatechin, rutin hydrate and quercetin-3-rhamnoside) analyzed by RP-HPLC, whereas hexane extract revealed an array of metabolites (fatty acids, sesquiterpenes, alkane hydrocarbons and esters) by GC-MS analysis. The antioxidant assays showed the enhanced potency of NJE with a half maximal inhibitory concentration (IC50) value of 222.22 ± 7.4 μg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH), 13.90 ± 0.5 μg/mL for 2,2′-azino-bis(3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 113.81 ± 4.2 μg/mL for superoxide, 948 ± 21.1 μg/mL for metal chelating and 12.3 ± 0.43 mg FeSO4 equivalent/g of extract for ferric reducing antioxidant power assays and was more potent than hexane extract. NJE effectively inhibited 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH)-induced oxidation of biomolecules analyzed by pBR322 plasmid DNA damage, protein oxidation of bovine serum albumin and lipid peroxidation assays. The observed effects might be due to the high content of polyphenols, 53.06 ± 2.2 mg gallic acid equivalents/g, and flavonoids, 25.303 ± 0.9 mg catechin equivalents/g, of NJE compared to the hexane fraction. Additionally, the extract abrogated the protein, carbonyl, and ROS formation, and NJE showed cytotoxicity in SH-SY5Y neuronal cells above 75 μg/mL. Thus, the study suggests that the herb unequivocally is a potential source of antioxidants and could aid in alleviating oxidative stress-mediated disorders.
Oxidative Stress and the Use of Antioxidants in Stroke
Tập 3 Số 3 - Trang 472-501
Rachel Shirley, Emily Ord, Lorraine M. Work
Transient or permanent interruption of cerebral blood flow by occlusion of a cerebral artery gives rise to an ischaemic stroke leading to irreversible damage or dysfunction to the cells within the affected tissue along with permanent or reversible neurological deficit. Extensive research has identified excitotoxicity, oxidative stress, inflammation and cell death as key contributory pathways underlying lesion progression. The cornerstone of treatment for acute ischaemic stroke remains reperfusion therapy with recombinant tissue plasminogen activator (rt-PA). The downstream sequelae of events resulting from spontaneous or pharmacological reperfusion lead to an imbalance in the production of harmful reactive oxygen species (ROS) over endogenous anti-oxidant protection strategies. As such, anti-oxidant therapy has long been investigated as a means to reduce the extent of injury resulting from ischaemic stroke with varying degrees of success. Here we discuss the production and source of these ROS and the various strategies employed to modulate levels. These strategies broadly attempt to inhibit ROS production or increase scavenging or degradation of ROS. While early clinical studies have failed to translate success from bench to bedside, the combination of anti-oxidants with existing thrombolytics or novel neuroprotectants may represent an avenue worthy of clinical investigation. Clearly, there is a pressing need to identify new therapeutic alternatives for the vast majority of patients who are not eligible to receive rt-PA for this debilitating and devastating disease.
Epigallocatechin Gallate Modulates Essential Elements, Zn/Cu Ratio, Hazardous Metal, Lipid Peroxidation, and Antioxidant Activity in the Brain Cortex during Cerebral Ischemia
Tập 11 Số 2 - Trang 396
Ming‐Cheng Lin, Chien-Chi Liu, Yu-Chen Lin, Ching-Wen Hsu
Cerebral ischemia induces oxidative brain injury via increased oxidative stress. Epigallocatechin gallate (EGCG) exerts anti-oxidant, anti-inflammatory, and metal chelation effects through its active polyphenol constituent. This study investigates whether EGCG protection against cerebral ischemia-induced brain cortex injury occurs through modulating lipid peroxidation, antioxidant activity, the essential elements of selenium (Se), zinc (Zn), magnesium (Mg), copper (Cu), iron (Fe), and copper (Cu), Zn/Cu ratio, and the hazardous metal lead (Pb). Experimentally, assessment of the ligation group was performed by occlusion of the right common carotid artery and the right middle cerebral artery for 1 h. The prevention group was intraperitoneally injected with EGCG (50 mg/kg) once daily for 10 days before cerebral ischemia. The brain cortex tissues were homogenized and the supernatants were harvested for biochemical analysis. Results indicated that cerebral ischemia markedly decreased SOD, CAT, Mg, Zn, Se, and Zn/Cu ratio and increased malondialdehyde (MDA), Fe, Cu, and Pb in the ischemic brain cortex. Notably, pretreating rats with EGCG before ischemic injury significantly reversed these biochemical results. Our findings suggest that the neuroprotection of EGCG in the ischemic brain cortex during cerebral ischemia involves attenuating oxidative injury. Notably, this neuroprotective mechanism is associated with regulating lipid peroxidation, antioxidant activity, essential elements, Zn/Cu ratio, and hazardous metal Pb.
Effects of Antioxidant Vitamins, Curry Consumption, and Heavy Metal Levels on Metabolic Syndrome with Comorbidities: A Korean Community-Based Cross-Sectional Study
Tập 10 Số 5 - Trang 808
Hai Duc Nguyen, Hojin Oh, Min‐Sun Kim
The burden of metabolic syndrome (MetS) has increased worldwide, especially during the COVID-19 pandemic, and this phenomenon is related to environmental, dietary, and lifestyle risk factors. We aimed to determine the association between the levels of serum heavy metals, hs-CRP, vitamins, and curry intake and to predict risks of MetS based on marginal effects. A data set of 60,256 Koreans aged ≥ 15 years between 2009 and 2017 was used to obtain information on sociodemographic, lifestyle, family history characteristics, MetS, food intake survey, and serum heavy metals. Daily intake of vitamins was measured by a one-day 24 h recall, and curry consumption was calculated using a food frequency questionnaire. Serum heavy metal levels were quantified by graphite furnace atomic absorption spectrometry and using a mercury analyzer. We found that vitamin B1, B2, B3, C, and A intakes were significantly lower in subjects with than without MetS. In contrast, serum levels of Pb, Hg, Cd, vitamin A, E, and hs-CRP were significantly higher in subjects with MetS. The risk of MetS was significantly lower for high curry consumers than low curry consumers (adjusted odds ratio 0.85, 95%CI 0.74–0.98). The risks of MetS were reduced by 12% and 1%, when vitamin B1 and C intakes increased by one mg, respectively, but were increased by 14%, 3%, and 9%, when serum levels of Pb, Hg, and hs-CRP increased by one unit. These results show that the potential health benefits resulting from vitamin and curry intakes could protect the public against the dual burden of communicable and non-communicable diseases. Further studies are required to reduce risk factors associated with serum heavy metal levels and to determine whether interactions between vitamin and curry consumption influence the presence of MetS.
Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications
Tập 9 Số 12 - Trang 1263
Patricia Cosme, A. Rodríguez, Javier Espino, María Garrido
Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body.