Antioxidants

Công bố khoa học tiêu biểu

* Dữ liệu chỉ mang tính chất tham khảo

Sắp xếp:  
Phytate Intake, Health and Disease: “Let Thy Food Be Thy Medicine and Medicine Be Thy Food”
Antioxidants - Tập 12 Số 1 - Trang 146
Antelm Pujol, Pilar Sanchís, F. Gráses, Luís Masmiquel

Phytate (myo-inositol hexakisphosphate or InsP6) is the main phosphorus reservoir that is present in almost all wholegrains, legumes, and oilseeds. It is a major component of the Mediterranean and Dietary Approaches to Stop Hypertension (DASH) diets. Phytate is recognized as a nutraceutical and is classified by the Food and Drug Administration (FDA) as Generally Recognized As Safe (GRAS). Phytate has been shown to be effective in treating or preventing certain diseases. Phytate has been shown to inhibit calcium salt crystallization and, therefore, to reduce vascular calcifications, calcium renal calculi and soft tissue calcifications. Moreover, the adsorption of phytate to the crystal faces can inhibit hydroxyapatite dissolution and bone resorption, thereby playing a role in the treatment/prevention of bone mass loss. Phytate has a potent antioxidation and anti-inflammatory action. It is capable of inhibiting lipid peroxidation through iron chelation, reducing iron-related free radical generation. As this has the effect of mitigating neuronal damage and loss, phytate shows promise in the treatment/prevention of neurodegenerative disease. It is reported that phytate improves lipid and carbohydrate metabolism, increases adiponectin, decreases leptin and reduces protein glycation, which is linked with macrovascular and microvascular diabetes complications. In this review, we summarize the benefits of phytate intake as seen in in vitro, animal model, epidemiological and clinical trials, and we also identify questions to answer in the future.

Antioxidant Content, Antioxidant Activity, and Antibacterial Activity of Five Plants from the Commelinaceae Family
Antioxidants - Tập 3 Số 4 - Trang 758-769
Joash Ban Lee Tan, Wei Ney Yap, Shen Tan, Yau Yan Lim, Sui Mae Lee

Commelinaceae is a family of herbaceous flowering plants with many species used in ethnobotany, particularly in South America. However, thus far reports of their bioactivity are few and far between. The primary aim of this study was to quantify the antioxidant and antibacterial activity of five Commelinaceae methanolic leaf extracts. The antioxidant content was evaluated by the total phenolic content (TPC), total tannin content (TTC), and total flavonoid content (TFC) assays. The antioxidant activities measured were DPPH free radical scavenging (FRS), ferric reducing power (FRP), and ferrous ion chelating (FIC); of the five plants, the methanolic leaf extract of Tradescantia zebrina showed the highest antioxidant content and activity, and exhibited antibacterial activity against six species of Gram-positive and two species of Gram-negative bacteria in a range of 5–10 mg/mL based on the broth microdilution method.

Modulation of Autophagy in Cancer Cells by Dietary Polyphenols
Antioxidants - Tập 10 Số 1 - Trang 123
Claudia Musiał, Kamila Siedlecka-Kroplewska, Zbigniew Kmieć, Magdalena Górska‐Ponikowska

The role of autophagy is to degrade damaged or unnecessary cellular structures. Both in vivo and in vitro studies suggest a dual role of autophagy in cancer—it may promote the development of neoplasms, but it may also play a tumor protective function. The mechanism of autophagy depends on the genetic context, tumor stage and type, tumor microenvironment, or clinical therapy used. Autophagy also plays an important role in cell death as well as in the induction of chemoresistance of cancer cells. The following review describes the extensive autophagic cell death in relation to dietary polyphenols and cancer disease. The review documents increasing use of polyphenolic compounds in cancer prevention, or as agents supporting oncological treatment. Polyphenols are organic chemicals that exhibit antioxidant, anti-inflammatory, anti-angiogenic, and immunomodulating properties, and can also initiate the process of apoptosis. In addition, polyphenols reduce oxidative stress and protect against reactive oxygen species. This review presents in vitro and in vivo studies in animal models with the use of polyphenolic compounds such as epigallocatechin-3-gallate (EGCG), oleuropein, punicalgin, apigenin, resveratrol, pterostilbene, or curcumin and their importance in the modulation of autophagy-induced death of cancer cells.

Medicinal Profile, Phytochemistry, and Pharmacological Activities of Murraya koenigii and its Primary Bioactive Compounds
Antioxidants - Tập 9 Số 2 - Trang 101
Rengasamy Balakrishnan, Vijayraja, Jo, Ganesan, Su-Kim, Dong‐Kug Choi

The discovery of several revitalizing molecules that can stop or reduce the pathology of a wide range of diseases will be considered a major breakthrough of the present time. Available synthetic compounds may provoke side effects and health issues, which heightens the need for molecules from plants and other natural resources under discovery as potential methods of replacing synthetic compounds. In traditional medicinal therapies, several plant extracts and phytochemicals have been reported to impart remedial effects as better alternatives. Murraya koenigii (M. koenigii) belongs to the Rutaceae family, which is commonly used as a medicinally important herb of Indian origin in the Ayurvedic system of medicine. Previous reports have demonstrated that the leaves, roots, and bark of this plant are rich sources of carbazole alkaloids, which produce potent biological activities and pharmacological effects. These include antioxidant, antidiabetic, anti-inflammatory, antitumor, and neuroprotective activities. The present review provides insight into the major components of M. koenigii and their pharmacological activities against different pathological conditions. The review also emphasizes the need for more research on the molecular basis of such activity in various cellular and animal models to validate the efficacy of M. koenigii and its derivatives as potent therapeutic agents.

Ornipural® Mitigates Malathion-Induced Hepato-Renal Damage in Rats via Amelioration of Oxidative Stress Biomarkers, Restoration of Antioxidant Activity, and Attenuation of Inflammatory Response
Antioxidants - Tập 11 Số 4 - Trang 757
Osama S. El Okle, Hossam G. Tohamy, Saed A. Althobaiti, Mohamed Mohamed Soliman, Heba I. Ghamry, Foad Farrag, Mustafa Shukry

The current study was instigated by investigating the ameliorative potential of Ornipural® solution against the hepato-renal toxicity of malathion. A total number of 35 male Wistar albino rats were divided equally into five groups. Group 1 served as control and received normal saline intraperitoneally. Group 2, the sham group, were administered only corn oil (vehicle of malathion) orally. Group 3 was orally intoxicated by malathion in corn oil at a dose of 135 mg/kg BW via intra-gastric gavage. Group 4 received malathion orally concomitantly with Ornipural® intraperitoneally. Group 5 was given Ornipural® solution in saline via intraperitoneal injection at a dose of (1 mL/kg BW). Animals received the treatment regime for 30 days. Histopathological examination revealed the harmful effect of malathion on hepatic and renal tissue. The results showed that malathion induced a significant decrease in body weight and marked elevation in the activity of liver enzymes, LDH, and ACP. In contrast, the activity of AchE and Paraoxonase was markedly decreased. Moreover, there was a significant increase in the serum content of bilirubin, cholesterol, and kidney injury markers. A significant elevation in malondialdehyde, nitric oxide (nitrite), and 8-hydroxy-2-deoxyguanosine was observed, along with a substantial reduction in antioxidant activity. Furthermore, malathion increased tumor necrosis factor-alpha, the upregulation of IL-1B, BAX, and IFN-β genes, and the downregulation of Nrf2, Bcl2, and HO-1 genes. Concurrent administration of Ornipural® with malathion attenuated the detrimental impact of malathion through ameliorating metabolic biomarkers, restoring antioxidant activity, reducing the inflammatory response, and improving pathologic microscopic alterations. It could be concluded that Ornipural® solution demonstrates hepatorenal defensive impacts against malathion toxicity at biochemical, antioxidants, molecular, and cellular levels.

Zinc and Oxidative Stress: Current Mechanisms
Antioxidants - Tập 6 Số 2 - Trang 24
Dilina N. Marreiro, Kyria Jayanne Clímaco Cruz, Jennifer Beatriz Silva Morais, Jéssica Batista Beserra, Juliana Soares Severo, Ana Paula de Oliveira

Oxidative stress is a metabolic dysfunction that favors the oxidation of biomolecules, contributing to the oxidative damage of cells and tissues. This consequently contributes to the development of several chronic diseases. In particular, zinc is one of the most relevant minerals to human health, because of its antioxidant properties. This review aims to provide updated information about the mechanisms involved in the protective role of zinc against oxidative stress. Zinc acts as a co-factor for important enzymes involved in the proper functioning of the antioxidant defense system. In addition, zinc protects cells against oxidative damage, acts in the stabilization of membranes and inhibits the enzyme nicotinamide adenine dinucleotide phosphate oxidase (NADPH-Oxidase). Zinc also induces the synthesis of metallothioneins, which are proteins effective in reducing hydroxyl radicals and sequestering reactive oxygen species (ROS) produced in stressful situations, such as in type 2 diabetes, obesity and cancer. Literature provides strong evidence for the role of zinc in the protection against oxidative stress in several diseases.

Anti-Inflammatory, Anti-Apoptotic, and Antioxidant Roles of Honey, Royal Jelly, and Propolis in Suppressing Nephrotoxicity Induced by Doxorubicin in Male Albino Rats
Antioxidants - Tập 11 Số 5 - Trang 1029
Hanaa K. Mohamed, Maysa A. Mobasher, Rasha A. Ebiya, Marwa T. Hassen, Howaida Mahmoud Hagag, Radwa El-Sayed, Shaimaa Abdel-Ghany, Manal M. Said, Nabil S. Awad

Nephrotoxicity is one of the limiting factors for using doxorubicin (DOX). Honey, propolis, and royal jelly were evaluated for their ability to protect against nephrotoxicity caused by DOX. Forty-two adult albino rats were divided into control groups. The DOX group was injected i.p. with a weekly dose of 3 mg/kg of DOX for six weeks. The DOX plus honey treated group was injected with DOX and on the next day, received 500 mg/kg/day of honey orally for 21 days. The DOX plus royal jelly treated group was injected with DOX and on the following day, received 100 mg/kg/day of royal jelly orally for 21 days. The DOX plus propolis treated group received DOX and on the following day, was treated orally with 50 mg/kg/day of propolis for 21 days. The DOX plus combined treatment group received DOX and on the following day, was treated with a mix of honey, royal jelly, and propolis orally for 21 days. Results confirmed that DOX raised creatinine, urea, MDA, and TNF-α while decreasing GPX and SOD. Damages and elevated caspase-3 expression were discovered during renal tissue’s histopathological and immunohistochemical studies. Combined treatment with honey, royal jelly, and propolis improved biochemical, histological, and immunohistochemical studies in the renal tissue. qRT-PCR revealed increased expression of poly (ADP-Ribose) polymerase-1 (PARP-1) and a decline of Bcl-2 in the DOX group. However, combined treatment induced a significant decrease in the PARP-1 gene and increased Bcl-2 expression levels. In addition, the combined treatment led to significant improvement in the expression of both PARP-1 and Bcl-2 genes. In conclusion, the combined treatment effectively inhibited nephrotoxicity induced by DOX.

The NRF2, Thioredoxin, and Glutathione System in Tumorigenesis and Anticancer Therapies
Antioxidants - Tập 9 Số 11 - Trang 1151
Morana Jaganjac, Lidija Milković, Suzana Borović Šunjić, Neven Žarković

Cancer remains an elusive, highly complex disease and a global burden. Constant change by acquired mutations and metabolic reprogramming contribute to the high inter- and intratumor heterogeneity of malignant cells, their selective growth advantage, and their resistance to anticancer therapies. In the modern era of integrative biomedicine, realizing that a personalized approach could benefit therapy treatments and patients’ prognosis, we should focus on cancer-driving advantageous modifications. Namely, reactive oxygen species (ROS), known to act as regulators of cellular metabolism and growth, exhibit both negative and positive activities, as do antioxidants with potential anticancer effects. Such complexity of oxidative homeostasis is sometimes overseen in the case of studies evaluating the effects of potential anticancer antioxidants. While cancer cells often produce more ROS due to their increased growth-favoring demands, numerous conventional anticancer therapies exploit this feature to ensure selective cancer cell death triggered by excessive ROS levels, also causing serious side effects. The activation of the cellular NRF2 (nuclear factor erythroid 2 like 2) pathway and induction of cytoprotective genes accompanies an increase in ROS levels. A plethora of specific targets, including those involved in thioredoxin (TRX) and glutathione (GSH) systems, are activated by NRF2. In this paper, we briefly review preclinical research findings on the interrelated roles of the NRF2 pathway and TRX and GSH systems, with focus given to clinical findings and their relevance in carcinogenesis and anticancer treatments.

Application of a Natural Antioxidant from Grape Pomace Extract in the Development of Bioactive Jute Fibers for Food Packaging
Antioxidants - Tập 10 Số 2 - Trang 216
Cristina Cejudo‐Bastante, Paloma Arjona‐Mudarra, M.T. Fernández-Ponce, Lourdes Casas, Casimiro Mantell, Enrique Martínez de la Ossa, C. Pereyra

There is an increasing demand for the use of new food packaging materials. In this study, natural jute fibers impregnated with a Petit Verdot Red Grape Pomace Extract (RGPE) was proposed as a new active food packaging material. Pressurized Liquid Extraction (PLE) and Enhanced Solvent Extraction (ESE) techniques were employed to obtain the bioactive RGPE. Afterward the supercritical solvent impregnation conditions to obtain RGPE-natural jute fibers were studied, by varying pressure, modifier percentage and dried RGPE mass. PLE technique offered the highest bioactive extract at 20 MPa, 55 °C, 1 h residence time using C2H5OH:H2O (1:1 v/v), providing an EC50 of 3.35 ± 0.25 and antibacterial capacity against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa (MIC of 12.0, 1.5 and 4.0 mg/mL RGPE respectively). The natural jute fibers impregnated with 3 mL of that RGPE (90 mg/mL) at 50 MPa and 55 °C generated the most efficient packing material with regards to its food preservation potential.

NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology
Antioxidants - Tập 10 Số 6 - Trang 890
Annelise Vermot, Isabelle Petit-Härtlein, Susan M. E. Smith, Franck Fieschi

The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.

Tổng số: 66   
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7