Identification and Expression Profiling of Two Saudi Arabia Catalase Genes from Wheat and Barley in Response to Abiotic and Hormonal Stresses
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gechev, T., and Petrov, V. (2020). Reactive Oxygen Species and Abiotic Stress in Plants. Int. J. Mol. Sci., 21.
Choudhury, 2017, Reactive oxygen species, abiotic stress and stress combination, Plant J., 90, 856, 10.1111/tpj.13299
Apel, 2004, Reactive oxygen species: Metabolism, oxidative stress, and signal transduction, Annu. Rev. Plant Biol., 55, 373, 10.1146/annurev.arplant.55.031903.141701
Mittler, 2004, Reactive oxygen gene network of plants, Trends Plant Sci., 9, 490, 10.1016/j.tplants.2004.08.009
He, 2018, Epigallocatechin gallate is the most effective catechin against antioxidant stress via hydrogen peroxide and radical scavenging activity, Med. Sci. Monit., 24, 8198, 10.12659/MSM.911175
Su, Y., Guo, J., Ling, H., Chen, S., Wang, S., Xu, L., and Allan, A.C. (2014). Isolation of a Novel Peroxisomal Catalase Gene from Sugarcane, Which Is Responsive to Biotic and Abiotic Stresses. PLoS ONE, 9.
Feki, 2015, Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase, Plant Physiol. Biochem., 97, 420, 10.1016/j.plaphy.2015.10.034
Tounsi, 2019, Localization and expression analysis of a novel catalase from Triticum monococcum TmCAT1 involved in response to different environmental stresses, Plant Physiol. Biochem., 139, 366, 10.1016/j.plaphy.2019.03.039
Wang, J., Wang, Y., Gao, C., Jiang, L., and Guo, D. (2017). PPero, a computational model for plant PTS1 type peroxisomal protein prediction. PLoS ONE, 12.
Wang, W., Cheng, Y., Chen, D., Liu, D., Hu, M., Jie Dong, J., Zhang, X., Song, L., and Shen, F. (2019). The Catalase Gene Family in Cotton: Genome-Wide Characterization and Bioinformatics Analysis. Cells, 8.
Hu, 2012, Catalase and estradiol inhibit mitochondrial protein S-glutathionylation, Mol. Cell. Biochem., 367, 51, 10.1007/s11010-012-1318-7
Iwamoto, 2000, Differential diurnal expression of rice catalase genes: The 5′-flanking region of CatA is not sufficient for circadian control, Plant Sci., 151, 39, 10.1016/S0168-9452(99)00194-6
Zhang, Y., Zheng, L., Yun, L., Ji, L., Li, G., Ji, M., Shi, Y., and Zheng, X. (2022). Catalase (CAT) Gene Family in Wheat (Triticum aestivum L.): Evolution, Expression Pattern and Function Analysis. Int. J. Mol. Sci., 23.
Raza, A., Su, W., Gao, A., Mehmood, S., Hussain, M., Nie, W., Lv, Y., Zou, X., and Zhang, X. (2021). Catalase (CAT) Gene Family in Rapeseed (Brassica napus L.): Genome-Wide Analysis, Identification, and Expression Pattern in Response to Multiple Hormones and Abiotic Stress Conditions. Int. J. Mol. Sci., 22.
Md, 2020, Response of catalase to drought in barley (Hordeum vulgare L.) seedlings and its purification, Afr. J. Biotechnol., 19, 478, 10.5897/AJB2020.17169
Giri, 2017, Nano-encapsulation of dietary phytoconstituent capsaicin on emulsome: Evaluation of anticancer activity through the measurement of liver oxidative stress in rats, Anti-Cancer Agents Med. Chem., 17, 1669
Zimmermann, 2006, Senescence-specific regulation of catalases in Arabidopsis thaliana (L.) Heynh, Plant Cell Environ., 29, 1049, 10.1111/j.1365-3040.2005.01459.x
Du, 2008, Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana, J. Integr. Plant Biol., 50, 1318, 10.1111/j.1744-7909.2008.00741.x
Kumar, 2016, MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets, Mol. Biol. Evol., 33, 1870, 10.1093/molbev/msw054
Geourjon, 1995, SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignements, CABIOS, 11, 681
Reynolds, 2018, EzMol: A web server wizard for the rapid visualisation and image production of protein and nucleic acid structures, J. Mol. Biol., 430, 2244, 10.1016/j.jmb.2018.01.013
Dimmer, 2012, The UniProt-GO Annotation database in 2011, Nucl. Acids Res., 40, 565, 10.1093/nar/gkr1048
Wilson, 2009, SUPERFAMILY—Sophisticated comparative genomics, data mining, visualization and phylogeny, Nucl. Acids Res., 37, D380, 10.1093/nar/gkn762
Kiefer, 2009, The SWISS-MODEL Repository and associated resources, Nucl. Acids Res., 37, D387, 10.1093/nar/gkn750
Pandit, S.B., Bhadra, R., Gowri, V., Balaji, S., Anand, B., and Srinivasan, N. (2004). SUPFAM: A database of sequence superfamilies of protein domains. BMC Bioinform., 5.
Kopp, 2004, The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models, Nucl. Acids Res., 32, 230, 10.1093/nar/gkh008
Yu, C.S., Cheng, C.W., Su, W.C., Chang, K.C., Huang, S.W., Hwang, J.K., and Lu, C.H. (2014). CELLO2GO: A Web Server for Protein subCELlular LOcalization Prediction with Functional Gene Ontology Annotation. PLoS ONE, 9.
Horton, 2007, WoLF PSORT: Protein localization predictor, Nucl. Acids Res., 35, W585, 10.1093/nar/gkm259
Chang, 2013, EuLoc: A web-server for accurately predict protein subcellular localization in eukaryotes by incorporating various features of sequence segmentsinto the general form of Chou’s PseAAC, J. Comput.-Aided Mol. Des., 27, 91, 10.1007/s10822-012-9628-0
Livak, 2001, Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method, Methods, 25, 402, 10.1006/meth.2001.1262
Sedmak, 1977, A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250, Anal. Biochem., 79, 544, 10.1016/0003-2697(77)90428-6
Ashraf, 2008, Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.), Environ. Exp. Bot., 63, 266, 10.1016/j.envexpbot.2007.11.008
Hao, 2006, The role of salicylic acid and carrot embryogenic callus extracts in somatic embryogenesis of naked oat (Avena nuda), Plant Cell Tissue Organ Cult., 85, 109, 10.1007/s11240-005-9052-4
Frugoli, 1996, Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh, Plant Physiol., 112, 327, 10.1104/pp.112.1.327
Anisimova, O.K., Shchennikova, A.V., Kochieva, E.Z., and Filyushin, M.A. (2021). Pathogenesis-RelatedGenes of PR1, PR2, PR4 and PR5 Families Are Involved in the Response to Fusarium Infection in Garlic (Allium sativum L.). Int. J. Mol. Sci., 22.
AlHudaib, K.A., Alanazi, N.A., Ghorbel, M., El-Ganainy, S.M., and Brini, F. (2022). Isolation and Characterization of a Novel Pathogenesis-Related Protein-1 Gene (AvPR-1) with Induced Expression in Oat (Avena sativa L.) during Abiotic and Hormonal Stresses. Plants, 11.
Chen, 2012, Expression of a cloned sweet potato catalase SPCAT1 alleviates ethephon-mediated leaf senescence and H2O2 elevation, J. Plant Physiol., 169, 86, 10.1016/j.jplph.2011.08.002
Ghorbel, M., Feki, K., Tounsi, S., Haddaji, N., Hanin, M., and Brini, F. (2022). The Activity of the Durum Wheat (Triticum durum L.) Catalase 1 (TdCAT1) Is Modulated by Calmodulin. Antioxidants, 11.
Purev, 2010, Isolation of a novel catalase (Cat1) gene from Panax ginseng and analysis of the response of this gene to various stresses, Plant Physiol. Biochem., 48, 451, 10.1016/j.plaphy.2010.02.005
Loewen, 2015, Unprecedented access of phenolic substrates to the heme active site of a catalase: Substrate binding and peroxidase-like reactivity of Bacillus pumilus catalase monitored by X-ray crystallography and EPR spectroscopy, Proteins Struct. Funct. Bioinform., 83, 853, 10.1002/prot.24777
Yang, 2002, Hydrogen peroxide homeostasis: Activation of plant catalase by calcium/calmodulin, Proc. Natl. Acad. Sci. USA, 99, 4097, 10.1073/pnas.052564899
Arsova, 2012, Current status of the plant phosphorylation site database PhosPhAt and its use as a resource for molecular plant physiology, Front. Plant Sci., 3, 132, 10.3389/fpls.2012.00132
Ghorbel, M., Feki, K., Tounsi, S., Bouali, N., Besbes, M., and Brini, F. (2022). The Putative Auto-Inhibitory Domain of Durum Wheat Catalase (TdCAT1) Positively Regulates Bacteria Cells in Response to Different Stress Conditions. Antioxidants, 11.
Willekens, 1994, Differential expression of catalase genes in Nicotiana plumbaginifolia (L.), Proc. Natl. Acad. Sci. USA, 91, 10450, 10.1073/pnas.91.22.10450
Mhamdi, 2010, Catalase function in plants: A focus on Arabidopsis mutants as stress-mimic models, J. Exp. Bot., 61, 4197, 10.1093/jxb/erq282
Joo, 2014, Rice CatA, CatB, and CatC are involved in environmental stress response, root growth, and photorespiration, respectively, J. Plant Biol., 57, 375, 10.1007/s12374-014-0383-8
Bouthiba, 2008, Varietal differences in the response of durum wheat (Triticum turgidum L. var. durum) to irrigation strategies in a semi-arid region of Algeria, Irrig. Sci., 26, 239, 10.1007/s00271-007-0089-5
Tyagi, 2021, Molecular characterization revealed the role of catalases under abiotic and arsenic stress in bread wheat (Triticum aestivum L.), J. Hazard. Mater., 403, 123585, 10.1016/j.jhazmat.2020.123585
Sooch, 2014, Recent insights into microbial catalases: Isolation, production and purification, Biotechnol. Adv., 32, 1429, 10.1016/j.biotechadv.2014.09.003
Oshima, 2008, Plant catalase is imported into peroxisomes by Pex5p but is distinct from typical PTS1 import, Plant. Cell Physiol., 49, 671, 10.1093/pcp/pcn038
Fujikawa, 2018, Effect of mutation of C-terminal and heme binding region of Arabidopsis catalaseon the import to peroxisomes, Biosci. Biotechnol. Biochem., 83, 322, 10.1080/09168451.2018.1530094
Kaur, 2011, Defining the plant peroxisomal proteome: From Arabidopsis to rice, Front. Plant Sci., 2, 103, 10.3389/fpls.2011.00103
Seth, 2018, A multiplex enzymatic machinery for cellular protein S-nitrosylation, Mol. Cell, 69, 451, 10.1016/j.molcel.2017.12.025
Chen, 2020, Transnitrosylation mediated by the non-canonical catalase ROG1 regulates nitric oxide signaling in plants, Dev. Cell, 53, 444, 10.1016/j.devcel.2020.03.020
Pande, 2022, Phytohormonal Regulation Through Protein S-Nitrosylation Under Stress, Front. Plant Sci., 13, 865542, 10.3389/fpls.2022.865542