American Journal of Physiology - Heart and Circulatory Physiology
SCOPUS (1977-2023)SCIE-ISI
0363-6135
1522-1539
Mỹ
Cơ quản chủ quản: AMER PHYSIOLOGICAL SOC , American Physiological Society
Các bài báo tiêu biểu
Entropy, trong mối quan hệ với các hệ thống động, là tỷ lệ sản xuất thông tin. Các phương pháp ước lượng entropy của một hệ thống được biểu diễn bằng chuỗi thời gian không phù hợp với phân tích các tập dữ liệu ngắn và ồn ào mà gặp phải trong các nghiên cứu về tim mạch và các sinh học khác. Pincus đã giới thiệu entropy xấp xỉ (ApEn), một tập hợp các biện pháp về độ phức tạp của hệ thống rất gần liên quan đến entropy, dễ dàng được áp dụng cho các chuỗi thời gian tim mạch lâm sàng và khác. Tuy nhiên, thống kê của ApEn dẫn đến các kết quả không nhất quán. Chúng tôi đã phát triển một biện pháp phức tạp mới và liên quan, entropy mẫu (SampEn), và đã so sánh ApEn và SampEn bằng cách sử dụng chúng để phân tích các tập hợp số ngẫu nhiên với đặc điểm xác suất đã biết. Chúng tôi cũng đã đánh giá cross-ApEn và cross-SampEn, sử dụng các tập dữ liệu tim mạch để đo sự tương đồng của hai chuỗi thời gian khác nhau. SampEn đồng thuận với lý thuyết gần gũi hơn nhiều so với ApEn qua một dải điều kiện rộng. Độ chính xác cải thiện của thống kê SampEn nên làm cho nó hữu ích trong việc nghiên cứu các chuỗi thời gian sinh lý lâm sàng và các sinh học khác.
The experimental and clinical possibilities for studying cardiac arrhythmias in human ventricular myocardium are very limited. Therefore, the use of alternative methods such as computer simulations is of great importance. In this article we introduce a mathematical model of the action potential of human ventricular cells that, while including a high level of electrophysiological detail, is computationally cost-effective enough to be applied in large-scale spatial simulations for the study of reentrant arrhythmias. The model is based on recent experimental data on most of the major ionic currents: the fast sodium, L-type calcium, transient outward, rapid and slow delayed rectifier, and inward rectifier currents. The model includes a basic calcium dynamics, allowing for the realistic modeling of calcium transients, calcium current inactivation, and the contraction staircase. We are able to reproduce human epicardial, endocardial, and M cell action potentials and show that differences can be explained by differences in the transient outward and slow delayed rectifier currents. Our model reproduces the experimentally observed data on action potential duration restitution, which is an important characteristic for reentrant arrhythmias. The conduction velocity restitution of our model is broader than in other models and agrees better with available data. Finally, we model the dynamics of spiral wave rotation in a two-dimensional sheet of human ventricular tissue and show that the spiral wave follows a complex meandering pattern and has a period of 265 ms. We conclude that the proposed model reproduces a variety of electrophysiological behaviors and provides a basis for studies of reentrant arrhythmias in human ventricular tissue.
Oxidative stress, defined as an excess production of reactive oxygen species (ROS) relative to antioxidant defense, has been shown to play an important role in the pathophysiology of cardiac remodeling and heart failure (HF). It induces subtle changes in intracellular pathways, redox signaling, at lower levels, but causes cellular dysfunction and damage at higher levels. ROS are derived from several intracellular sources, including mitochondria, NAD(P)H oxidase, xanthine oxidase, and uncoupled nitric oxide synthase. The production of ROS is increased within the mitochondria from failing hearts, whereas normal antioxidant enzyme activities are preserved. Chronic increases in ROS production in the mitochondria lead to a catastrophic cycle of mitochondrial DNA (mtDNA) damage as well as functional decline, further ROS generation, and cellular injury. ROS directly impair contractile function by modifying proteins central to excitation-contraction coupling. Moreover, ROS activate a broad variety of hypertrophy signaling kinases and transcription factors and mediate apoptosis. They also stimulate cardiac fibroblast proliferation and activate the matrix metalloproteinases, leading to the extracellular matrix remodeling. These cellular events are involved in the development and progression of maladaptive myocardial remodeling and failure. Oxidative stress is also involved in the skeletal muscle dysfunction, which may be associated with exercise intolerance and insulin resistance in HF. Therefore, oxidative stress is involved in the pathophysiology of HF in the heart as well as in the skeletal muscle. A better understanding of these mechanisms may enable the development of novel and effective therapeutic strategies against HF.
Vascular endothelial cells (ECs) play significant roles in regulating circulatory functions. Mechanical stimuli, including the stretch and shear stress resulting from circulatory pressure and flow, modulate EC functions by activating mechanosensors, signaling pathways, and gene and protein expressions. Mechanical forces with a clear direction (e.g., the pulsatile shear stress and the uniaxial circumferential stretch existing in the straight part of the arterial tree) cause only transient molecular signaling of pro-inflammatory and proliferative pathways, which become downregulated when such directed mechanical forces are sustained. In contrast, mechanical forces without a definitive direction (e.g., disturbed flow and relatively undirected stretch seen at branch points and other regions of complex geometry) cause sustained molecular signaling of pro-inflammatory and proliferative pathways. The EC responses to directed mechanical stimuli involve the remodeling of EC structure to minimize alterations in intracellular stress/strain and elicit adaptive changes in EC signaling in the face of sustained stimuli; these cellular events constitute a feedback control mechanism to maintain vascular homeostasis and are atheroprotective. Such a feedback mechanism does not operate effectively in regions of complex geometry, where the mechanical stimuli do not have clear directions, thus placing these areas at risk for atherogenesis. The mechanotransduction-induced EC adaptive processes in the straight part of the aorta represent a case of the “Wisdom of the Cell,” as a part of the more general concept of the “Wisdom of the Body” promulgated by Cannon, to maintain cellular homeostasis in the face of external perturbations.
Unlike during development, blood vessels in the adult are generally thought not to require VEGF for normal function. However, VEGF is a survival factor for many tumor vessels, and there are clues that some normal blood vessels may also depend on VEGF. In this study, we sought to identify which, if any, vascular beds in adult mice depend on VEGF for survival. Mice were treated with a small-molecule VEGF receptor (VEGFR) tyrosine kinase inhibitor or soluble VEGFRs for 1–3 wk. Blood vessels were assessed using immunohistochemistry or scanning or transmission electron microscopy. In a study of 17 normal organs after VEGF inhibition, we found significant capillary regression in pancreatic islets, thyroid, adrenal cortex, pituitary, choroid plexus, small-intestinal villi, and epididymal adipose tissue. The amount of regression was dose dependent and varied from organ to organ, with a maximum of 68% in thyroid, but was less in normal organs than in tumors in RIP-Tag2-transgenic mice or in Lewis lung carcinoma. VEGF-dependent capillaries were fenestrated, expressed high levels of both VEGFR-2 and VEGFR-3, and had normal pericyte coverage. Surviving capillaries in affected organs had fewer fenestrations and less VEGFR expression. All mice appeared healthy, but distinct physiological changes, including more efficient blood glucose handling, accompanied some regimens of VEGF inhibition. Strikingly, most capillaries in the thyroid grew back within 2 wk after cessation of treatment for 1 wk. Our findings of VEGF dependency of normal fenestrated capillaries and rapid regrowth after regression demonstrate the plasticity of the adult microvasculature.
The novel SARS coronavirus SARS-CoV-2 pandemic may be particularly deleterious to patients with underlying cardiovascular disease (CVD). The mechanism for SARS-CoV-2 infection is the requisite binding of the virus to the membrane-bound form of angiotensin-converting enzyme 2 (ACE2) and internalization of the complex by the host cell. Recognition that ACE2 is the coreceptor for the coronavirus has prompted new therapeutic approaches to block the enzyme or reduce its expression to prevent the cellular entry and SARS-CoV-2 infection in tissues that express ACE2 including lung, heart, kidney, brain, and gut. ACE2, however, is a key enzymatic component of the renin-angiotensin-aldosterone system (RAAS); ACE2 degrades ANG II, a peptide with multiple actions that promote CVD, and generates Ang-(1–7), which antagonizes the effects of ANG II. Moreover, experimental evidence suggests that RAAS blockade by ACE inhibitors, ANG II type 1 receptor antagonists, and mineralocorticoid antagonists, as well as statins, enhance ACE2 which, in part, contributes to the benefit of these regimens. In lieu of the fact that many older patients with hypertension or other CVDs are routinely treated with RAAS blockers and statins, new clinical concerns have developed regarding whether these patients are at greater risk for SARS-CoV-2 infection, whether RAAS and statin therapy should be discontinued, and the potential consequences of RAAS blockade to COVID-19-related pathologies such as acute and chronic respiratory disease. The current perspective critically examines the evidence for ACE2 regulation by RAAS blockade and statins, the cardiovascular benefits of ACE2, and whether ACE2 blockade is a viable approach to attenuate COVID-19.
Listen to this article’s corresponding podcast at: https://ajpheart.podbean.com/e/covid-19-ace2-and-the-cardiovascular-consequences/ .
Human-induced pluripotent stem cells (hiPSCs) can differentiate into functional cardiomyocytes; however, the electrophysiological properties of hiPSC-derived cardiomyocytes have yet to be fully characterized. We performed detailed electrophysiological characterization of highly pure hiPSC-derived cardiomyocytes. Action potentials (APs) were recorded from spontaneously beating cardiomyocytes using a perforated patch method and had atrial-, nodal-, and ventricular-like properties. Ventricular-like APs were more common and had maximum diastolic potentials close to those of human cardiac myocytes, AP durations were within the range of the normal human electrocardiographic QT interval, and APs showed expected sensitivity to multiple drugs (tetrodotoxin, nifedipine, and E4031). Early afterdepolarizations (EADs) were induced with E4031 and were bradycardia dependent, and EAD peak voltage varied inversely with the EAD take-off potential. Gating properties of seven ionic currents were studied including sodium ( INa), L-type calcium ( ICa), hyperpolarization-activated pacemaker ( If), transient outward potassium ( Ito), inward rectifier potassium ( IK1), and the rapidly and slowly activating components of delayed rectifier potassium ( IKr and IKs, respectively) current. The high purity and large cell numbers also enabled automated patch-clamp analysis. We conclude that these hiPSC-derived cardiomyocytes have ionic currents and channel gating properties underlying their APs and EADs that are quantitatively similar to those reported for human cardiac myocytes. These hiPSC-derived cardiomyocytes have the added advantage that they can be used in high-throughput assays, and they have the potential to impact multiple areas of cardiovascular research and therapeutic applications.
Echo-derived pulmonary arterial systolic pressure (PASP) and right ventricular (RV) tricuspid annular plane systolic excursion (TAPSE; from the end of diastole to end-systole) are of basic relevance in the clinical follow-up of heart failure (HF) patients, carrying two- to threefold increase in cardiac risk when increased and reduced, respectively. We hypothesized that the relationship between TAPSE (longitudinal RV fiber shortening) and PASP (force generated by the RV) provides an index of in vivo RV length-force relationship, with their ratio better disclosing prognosis. Two hundred ninety-three HF patients with reduced (HFrEF, n = 247) or with preserved left ventricular (LV) ejection fraction (HFpEF, n = 46) underwent echo-Doppler studies and N-terminal pro-brain-type natriuretic peptide assessment and were tracked for adverse events. The median follow-up duration was 20.8 mo. TAPSE vs. PASP relationship showed a downward regression line shift in nonsurvivors who were more frequently presenting with higher PASP and lower TAPSE. HFrEF and HFpEF patients exhibited a similar distribution along the regression line. Given the TAPSE, PASP, and TAPSE-to-PASP ratio (TAPSE/PASP) collinearity, separate Cox regression and Kaplan-Meier analyses were performed: one with TAPSE and PASP as individual measures, and the other combining them in ratio form. Hazard ratios for variables retained in the multivariate regression were as follows: TAPSE/PASP </≥ 0.36 mm/mmHg [hazard ratio (HR): 10.4, P < 0.001]; TAPSE </≥ 16 mm (HR: 5.1, P < 0.01); New York Heart Association functional class </≥ 3 (HR: 4.4, P < 0.001); E/e’ (HR: 4.1, P < 0.001). This study shows that the TAPSE vs. PASP relationship is shifted downward in nonsurvivors with a similar distribution in HFrEF and HFpEF, and their ratio improves prognostic resolution. The TAPSE vs. PASP relationship as a possible index of the length-force relationship may be a step forward for a more efficient RV function evaluation and is not affected by the quality of LV dysfunction.
Pharmacological activation of the prosurvival kinases Akt and ERK-1/2 at reperfusion, after a period of lethal ischemia, protects the heart against ischemia-reperfusion injury. We hypothesized that ischemic preconditioning (IPC) protects the heart by phosphorylating the prosurvival kinases Akt and ERK-1/2 at reperfusion. In isolated perfused Sprague-Dawley rat hearts subjected to 35 min of lethal ischemia, the phosphorylation states of Akt, ERK-1/2, and p70 S6 kinase (p70S6K) were determined after 15 min of reperfusion, and infarct size was measured after 120 min of reperfusion. IPC induced a biphasic response in Akt and ERK-1/2 phosphorylation during the preconditioning and reperfusion phases after the period of lethal ischemia. IPC induced a fourfold increase in Akt, ERK-1/2, and p70S6K phosphorylation at reperfusion and reduced the infarct risk-to-volume ratio (56.9 ± 5.7 and 20.9 ± 3.6% for control and IPC, respectively, P < 0.01). Inhibiting the IPC-induced phosphorylation of Akt, ERK-1/2, and p70S6K at reperfusion with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 or the MEK-1/2 inhibitor PD-98059 abrogated IPC-induced protection (46.3 ± 5.8, 49.2 ± 4.0, and 20.9 ± 3.6% for IPC + LY-294002, IPC + PD-98059, and IPC, respectively, P < 0.01), demonstrating that the phosphorylation of these kinases at reperfusion is required for IPC-induced protection. In conclusion, we demonstrate that the reperfusion phase following sustained ischemia plays an essential role in mediating IPC-induced protection. Specifically, we demonstrate that IPC protects the heart by phosphorylating the prosurvival kinases Akt and ERK-1/2 at reperfusion.