Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell

American Journal of Physiology - Heart and Circulatory Physiology - Tập 292 Số 3 - Trang H1209-H1224 - 2007
Shu Chien1
1Dept of Bioengineering, PFBH, Rm 134, Univ of California, San Diego, La Jolla, CA 92093-0412, USA. [email protected]

Tóm tắt

Vascular endothelial cells (ECs) play significant roles in regulating circulatory functions. Mechanical stimuli, including the stretch and shear stress resulting from circulatory pressure and flow, modulate EC functions by activating mechanosensors, signaling pathways, and gene and protein expressions. Mechanical forces with a clear direction (e.g., the pulsatile shear stress and the uniaxial circumferential stretch existing in the straight part of the arterial tree) cause only transient molecular signaling of pro-inflammatory and proliferative pathways, which become downregulated when such directed mechanical forces are sustained. In contrast, mechanical forces without a definitive direction (e.g., disturbed flow and relatively undirected stretch seen at branch points and other regions of complex geometry) cause sustained molecular signaling of pro-inflammatory and proliferative pathways. The EC responses to directed mechanical stimuli involve the remodeling of EC structure to minimize alterations in intracellular stress/strain and elicit adaptive changes in EC signaling in the face of sustained stimuli; these cellular events constitute a feedback control mechanism to maintain vascular homeostasis and are atheroprotective. Such a feedback mechanism does not operate effectively in regions of complex geometry, where the mechanical stimuli do not have clear directions, thus placing these areas at risk for atherogenesis. The mechanotransduction-induced EC adaptive processes in the straight part of the aorta represent a case of the “Wisdom of the Cell,” as a part of the more general concept of the “Wisdom of the Body” promulgated by Cannon, to maintain cellular homeostasis in the face of external perturbations.

Từ khóa


Tài liệu tham khảo

10.1161/01.RES.86.2.185

10.1128/MCB.15.11.5957

10.1016/S0006-355X(97)00025-5

10.1016/S0092-8674(00)80213-5

10.1096/fj.01-0434fje

Cannon WB.The Wisdom of the Body.New York: Norton, 1932, 333 pages.

10.1152/physiolgenomics.2001.7.1.55

10.1074/jbc.274.26.18393

10.1016/0021-9150(95)05596-O

10.1016/S0079-6107(03)00053-1

Chien S.Molecular basis of rheological modulation of endothelial functions: importance of stress direction.Biorheology43: 95–116, 2006.

10.1007/978-1-4684-8935-4_8

10.1115/1.2834303

10.1083/jcb.133.6.1403

10.1161/01.ATV.10.2.188

10.1007/BF00414165

Cornhill JF, Herderick EE, Stary HC.Topography of human aortic sudanophilic lesions.Monogr Atheroscler15: 13–19, 1990.

10.1073/pnas.0406073101

10.1159/000159224

10.1002/(SICI)1097-0169(1998)40:4<317::AID-CM1>3.0.CO;2-8

Glagov S, Zarins C, Giddens DP, Ku DN.Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries.Arch Pathol Lab Med112: 1018–1031, 1988.

10.1152/ajpheart.2000.278.4.H1401

10.1152/physiol.00040.2004

10.1115/1.2891226

10.1096/fj.02-1064com

10.1152/ajpheart.1999.277.4.H1593

Huang AL, Jan KM, Chien S.Role of intercellular junctions in the passage of horseradish peroxidase across aortic endothelium.Lab Invest67: 201–209, 1992.

10.1073/pnas.98.3.1042

10.1074/jbc.272.2.1395

10.1111/j.1749-6632.1998.tb08987.x

Karino T.Microscopic structure of disturbed flows in the arterial and venous systems, and its implication in the localization of vascular diseases.Int Angiol5: 297–313, 1986.

10.1073/pnas.0506041102

10.1016/j.cellsig.2006.02.008

10.1161/01.ATV.9.4.439

10.1161/01.RES.64.1.21

10.1152/ajpcell.1994.267.3.C753

Kuo CT, Veselits ML, Leiden JM.LKLF and FasL expression: correctiona and clarification.Science278: 788–789, 1997.

Labrador V, Chen KD, Li YS, Muller S, Stoltz JF, Chien S.Interactions of mechanotransduction pathways.Biorheology40: 47–52, 2003.

10.1016/j.jbiomech.2004.09.030

10.1128/MCB.16.11.5947

10.1073/pnas.170282597

10.1161/01.ATV.10.5.703

10.1016/0021-9150(90)90115-Y

10.1161/01.ATV.9.2.230

10.1161/hq0102.101822

10.1016/0021-9150(94)05497-7

10.1007/BF02066350

10.1242/jcs.02760

10.1115/1.2895532

Ohashi T, Ishii Y, Ishikawa Y, Matsumoto T, Sato M.Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells.Biomed Mater Eng12: 319–327, 2002.

10.1038/331168a0

10.1083/jcb.200205049

10.1016/0092-8674(92)90163-7

10.3109/10739689709146808

Sato M, Ohashi T.Biorheological views of endothelial cell responses to mechanical stimuli.Biorheology42: 421–441, 2005.

10.1016/S0014-5793(00)01746-4

10.1074/jbc.M107026200

10.1016/0092-8674(86)90817-2

10.1016/S0962-8924(01)02152-3

10.1161/01.ATV.9.6.895

10.1161/01.RES.62.4.699

10.1073/pnas.92.17.8069

10.1073/pnas.91.11.4678

10.1016/S0021-9290(02)00443-8

10.1074/jbc.M300703200

10.1114/1.88

10.1172/JCI119083

10.1016/S0741-5214(99)70249-1

10.1007/BF02631337

10.1161/01.ATV.8.4.410

10.1074/jbc.274.29.20144

10.1161/01.RES.71.4.883

10.1038/nature03952

Walpola PL, Gotlieb AI, Langille BL.Monocyte adhesion and changes in endothelial cell number, morphology, and F-actin distribution elicited by low shear stress in vivo.Am J Pathol142: 1392–1400, 1993.

10.1016/S0021-9290(01)00150-6

10.1016/j.bbrc.2006.01.089

10.1152/ajpcell.00222.2002

10.1038/11056

10.1152/ajpheart.1985.248.6.H945

10.1073/pnas.1332808100

10.1083/jcb.97.2.416

10.1126/science.6681677

10.1038/nm1338

10.1006/bbrc.1996.1057

10.1161/01.ATV.15.10.1781

10.1152/physiolgenomics.00024.2002