American Association for the Advancement of Science (AAAS)
Công bố khoa học tiêu biểu
* Dữ liệu chỉ mang tính chất tham khảo
2-Deoxy-[ 14 C]glucose metabolism was examined in brains of hypoxic, normotensive rats by autoradiography, which revealed alternating cortical columns of high and low metabolism. Activity in white matter was increased severalfold over that in adjacent gray matter. The columns were anatomically related to penetrating cortical arteries with areas between arteries demonstrating higher rates of metabolism. The results suggest the presence of interarterial tissue oxygen gradients that influence regional glucose metabolism. The relatively greater sensitivity of white matter metabolism to hypoxia may lead to an understanding of white matter damage in postanoxic leukoencephalopathy.
Biodegradable polymers are designed to degrade upon disposal by the action of living organisms. Extraordinary progress has been made in the development of practical processes and products from polymers such as starch, cellulose, and lactic acid. The need to create alternative biodegradable water-soluble polymers for down-the-drain products such as detergents and cosmetics has taken on increasing importance. Consumers have, however, thus far attached little or no added value to the property of biodegradability, forcing industry to compete head-to-head on a cost-performance basis with existing familiar products. In addition, no suitable infrastructure for the disposal of biodegradable materials exists as yet.
Although the electrical integration of chemically synthesized nanowires has been achieved with lithography, optical integration, which promises high speeds and greater device versatility, remains unexplored. We describe the properties and functions of individual crystalline oxide nanoribbons that act as subwavelength optical waveguides and assess their applicability as nanoscale photonic elements. The length, flexibility, and strength of these structures enable their manipulation on surfaces, including the optical linking of nanoribbon waveguides and other nanowire elements to form networks and device components. We demonstrate the assembly of ribbon waveguides with nanowire light sources and detectors as a first step toward building nanowire photonic circuitry.
We have developed a new method of countercurrent chromatography which employs a vertical helical tube in the centrifugal field. The helical tube is arranged so that it does not rotate as it revolves, thus eliminating the need for rotating seals. When the gyrating tube is filled with either phase and the other phase is introduced into the tube in the proper direction, an equilibrium state results in which the two phases are split into multiple alternating segments within the coil. Each phase oscillates to and fro with the rotation as the moving phase is steadily eluted out through the other end of the tube. Consequently, solutes introduced into the tube are subjected to a rapid partition process, resulting in an efficient chromatographic separation without the complications arising from solid supports. The method is illustrated by the microanalytical separation of dinitrophenyl amino acids and can be used on a preparative scale.
Development of a rapid and sensitive radioassay has permitted study of the conversion of tryptophan to 5-hydroxytryptophan in mammalian tissues. Of normal tissues examined, beef and rat pineal gland contained the highest activity. This is the first direct demonstration of tryptophan hydroxylase in this hydroxyindole-rich tissue. Rat and rabbit brainstem and human carcinoid tumor also had quantities of enzyme that could be measured easily. The reaction requires a reduced pteridine and oxygen and is inhibited by para-chlorophenylalanine.
Current consensus holds that the 3-million-year-old hominid
Alzheimer's disease is a form of localized amyloidosis characterized by cerebral cortical amyloid plaques, neurofibrillary tangles, and amyloid deposits within the walls of leptomeningeal vessels. Although most cases of Alzheimer's disease are sporadic, kindreds with autosomal-dominant inheritance of the syndrome suggest that a single mutation may be important in pathogenesis. Direct sequencing of DNA from a family with autopsy-proven Alzheimer's disease revealed a single amino acid substitution (Phe for Val) in the transmembrane domain of the amyloid precursor protein. This mutation correlates with the presence of Alzheimer's disease in all patients in this study, and may be the inherited factor causing both amyloid fibril formation and dementia.
Treatment of bacterial infections currently focuses on choosing an antibiotic that matches a pathogen’s susceptibility, with less attention paid to the risk that even susceptibility-matched treatments can fail as a result of resistance emerging in response to treatment. Combining whole-genome sequencing of 1113 pre- and posttreatment bacterial isolates with machine-learning analysis of 140,349 urinary tract infections and 7365 wound infections, we found that treatment-induced emergence of resistance could be predicted and minimized at the individual-patient level. Emergence of resistance was common and driven not by de novo resistance evolution but by rapid reinfection with a different strain resistant to the prescribed antibiotic. As most infections are seeded from a patient’s own microbiota, these resistance-gaining recurrences can be predicted using the patient’s past infection history and minimized by machine learning–personalized antibiotic recommendations, offering a means to reduce the emergence and spread of resistant pathogens.
How do the network positions of the first individuals in a society to receive information about a new product affect its eventual diffusion? To answer this question, we develop a model of information diffusion through a social network that discriminates between information passing (individuals must be aware of the product before they can adopt it, and they can learn from their friends) and endorsement (the decisions of informed individuals to adopt the product might be influenced by their friends’ decisions). We apply it to the diffusion of microfinance loans, in a setting where the set of potentially first-informed individuals is known. We then propose two new measures of how “central” individuals are in their social network with regard to spreading information; the centrality of the first-informed individuals in a village helps significantly in predicting eventual adoption.
Six months before a microfinance institution entered 43 villages in India and began offering microfinance loans to villagers, we collected detailed network data by surveying households about a wide range of interactions. The microfinance institution began by inviting “leaders” (e.g., teachers, shopkeepers, savings group leaders) to an informational meeting and then asked them to spread information about the loans. Using the network data, the locations in the network of these first-informed villagers (or injection points), and data regarding the villagers’ subsequent participation, we estimate the parameters of our diffusion model using the method of simulated moments. The parameters of the model are validated by showing that the model correctly predicts the evolution of participation in each village over time. The model yields a new measure of the effectiveness of any given node as an injection point, which we call communication centrality. Finally, we develop an easily computed proxy for communication centrality, which we call diffusion centrality.
We find that a microfinance participant is seven times as likely to inform another household as a nonparticipant; nonetheless, information transmitted by nonparticipants is important and accounts for about one-third of the eventual informedness and participation in the village because nonparticipants are much more numerous. Once information passing is accounted for, an informed household’s decision to participate is not significantly dependent on how many of its neighbors have participated. Communication centrality, when applied to the set of first-informed individuals in a village, substantially outperforms other standard network measures of centrality in predicting microfinance participation in this context. Finally, the simpler proxy measure—diffusion centrality—is strongly correlated with communication centrality and inherits its predictive properties.
Our results suggest that a model of diffusion can distinguish information passing from endorsement effects, and that understanding the nature of transmission may be important in identifying the ideal places to inject information.
- 1
- 2
- 3
- 4
- 5
- 6
- 10