The Crystal Structure of the Ribosome Bound to EF-Tu and Aminoacyl-tRNA

American Association for the Advancement of Science (AAAS) - Tập 326 Số 5953 - Trang 688-694 - 2009
T.M. Schmeing1, Rebecca M. Voorhees1, A.C. Kelley1, Yong‐Gui Gao1, F.V. Murphy1, John R. Weir1, V. Ramakrishnan1
1MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK

Tóm tắt

Ribosomes Caught in Translation To synthesize proteins, the ribosome must select cognate transfer RNAs (tRNAs) based on base-pairing with the messenger RNA (mRNA) template (a process known as decoding), form a peptide bond, and then move the mRNA:tRNA assembly relative to the ribosome (a process known as translocation). Decoding and translocation require protein guanosine triphosphatases (GTPases), and, while high-resolution structures of the ribosome have greatly furthered our understanding of ribosome function, the detailed mechanism of these GTPases during the elongation cycle remains unclear. Two Research Articles now give a clearer view of these steps in bacterial protein synthesis (see the Perspective by Liljas ). Schmeing et al. (p. 688 , published online 15 October) present the crystal structure of the ribosome bound to Elongation factor-Tu (EF-Tu) and amino-acyl tRNA that gives insight into how EF-Tu contributes to accurate decoding. Gao et al. (p. 694 , published online 15 October) describe the crystal structure of the ribosome bound to Elongation factor-G (EF-G) trapped in a posttranslocation state by the antibiotic fusidic acid that gives insight into how EF-G functions in translocation.

Từ khóa


Tài liệu tham khảo

10.1074/jbc.271.2.646

10.1126/science.1060612

10.1016/S1097-2765(04)00005-X

10.1016/S0092-8674(02)01086-3

10.1021/bi9809425

10.1038/228057a0

10.1126/science.1111408

10.1016/0022-2836(89)90497-X

10.1006/jmbi.1994.1095

10.1016/0022-2836(79)90282-1

10.1021/bi992331y

10.1146/annurev.biochem.74.061903.155440

10.1038/365126a0

10.1016/S0022-2836(03)00947-1

10.1038/334362a0

10.1021/bi026301y

10.1038/349117a0

10.1073/pnas.74.1.198

10.1002/j.1460-2075.1982.tb01240.x

10.1038/nsmb831

10.1074/jbc.M100017200

10.1126/science.270.5241.1464

10.1038/38770

10.1093/emboj/cdf326

10.1016/0092-8674(89)90128-1

10.1073/pnas.0811370106

10.1038/emboj.2009.26

10.1021/bi061192z

10.1021/bi00206a033

10.1038/nsmb.1577

10.1093/nar/2.8.1421

10.1261/rna.1355709

10.1006/jmbi.1997.1254

10.1002/j.1460-2075.1996.tb01066.x

10.1021/bi00381a038

10.1073/pnas.0812576106

10.1126/science.1131127

10.1006/jmbi.1994.1041

10.1016/j.cell.2005.04.015

10.1073/pnas.0705988104

10.1111/j.1432-1033.1996.0265u.x

10.1074/jbc.M102186200

10.1093/emboj/18.13.3800