Advanced Electronic Materials
SCIE-ISI SCOPUS (2015-2023)
2199-160X
2199-160X
Đức
Cơ quản chủ quản: WILEY , Wiley-VCH Verlag
Các bài báo tiêu biểu
2D transition metal carbide Ti3C2Tx (T stands for surface termination), the most widely studied MXene, has shown outstanding electrochemical properties and promise for a number of bulk applications. However, electronic properties of individual MXene flakes, which are important for understanding the potential of these materials, remain largely unexplored. Herein, a modified synthetic method is reported for producing high‐quality monolayer Ti3C2Tx flakes. Field‐effect transistors (FETs) based on monolayer Ti3C2Tx flakes are fabricated and their electronic properties are measured. Individual Ti3C2Tx flakes exhibit a high conductivity of 4600 ± 1100 S cm−1 and field‐effect electron mobility of 2.6 ± 0.7 cm2 V−1 s−1. The resistivity of multilayer Ti3C2Tx films is only one order of magnitude higher than the resistivity of individual flakes, which indicates a surprisingly good electron transport through the surface terminations of different flakes, unlike in many other 2D materials. Finally, the fabricated FETs are used to investigate the environmental stability and kinetics of oxidation of Ti3C2Tx flakes in humid air. The high‐quality Ti3C2Tx flakes are reasonably stable and remain highly conductive even after their exposure to air for more than 24 h. It is demonstrated that after the initial exponential decay the conductivity of Ti3C2Tx flakes linearly decreases with time, which is consistent with their edge oxidation.
Sự phát triển nhanh chóng của các công nghệ hữu cơ mới đã dẫn đến những ứng dụng quan trọng của thiết bị điện tử hữu cơ như đi-ốt phát sáng, pin năng lượng mặt trời và bóng bán dẫn hiệu ứng trường. Yêu cầu lớn hiện nay là chất dẫn điện có độ dẫn cao và tính trong suốt để có thể hoạt động như lớp chuyển tải điện tích hoặc kết nối điện trong các thiết bị hữu cơ. Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonic acid) (PEDOT:PSS), được biết đến như là chất dẫn điện nổi bật nhất, đã đảm nhận vai trò này nhờ vào khả năng tạo màng tốt, tính trong suốt cao, độ dẫn điện điều chỉnh được và độ ổn định nhiệt tuyệt vời. Bài tổng quan này tóm tắt các phương pháp hóa học và vật lý thú vị có thể nâng cao hiệu quả độ dẫn điện của PEDOT:PSS một cách hiệu quả, đặc biệt tập trung vào cơ chế nâng cao độ dẫn cũng như ứng dụng của các màng PEDOT:PSS. Những triển vọng cho các nỗ lực nghiên cứu trong tương lai cũng được đề cập. Dự kiến rằng các màng PEDOT:PSS với độ dẫn cao và tính trong suốt có thể là trọng điểm cho những đột phá vật liệu điện tử hữu cơ trong tương lai.
Ferroelectric polymers are the most promising electroactive materials with outstanding properties that can be integrated into a variety of flexible electronic devices. Their multifunctional capabilities, ability to bend and stretch, ease of processing, chemical stability, and the high biocompatibility of polyvinylidene fluoride (PVDF)‐based polymers make them attractive for applications in flexible memories, energy transducers, and electronic skins. Here, recent advance in the research of PVDF‐based flexible electronic devices is reviewed, including nonvolatile memories, energy‐harvesting devices, and multifunctional portable sensors.
Current microfabrication of micro‐supercapacitors often involves multistep processing and delicate lithography protocols. In this study, simple fabrication of an asymmetric MXene‐based micro‐supercapacitor that is flexible, binder‐free, and current‐collector‐free is reported. The interdigitated device architecture is fabricated using a custom‐made mask and a scalable spray coating technique onto a flexible, transparent substrate. The electrode materials are comprised of titanium carbide MXene (Ti3C2T
Silicon doped hafnium oxide was the material used in the original report of ferroelectricity in hafnia in 2011. Since then, it has been subject of many further publications including the demonstration of the world's first ferroelectric field‐effect transistor in the state‐of‐the‐art 28 nm technology. Though many studies are conducted with a strong focus on application in memory devices, a comprehensive study on structural stability in these films remains to be seen. In this work, a film thickness of about 36 nm, instead of the 10 nm used in most previous studies, is utilized to carefully probe how the concentration range impacts the evolution of phases, the dopant distribution, the field cycling effects, and their interplay in the macroscopic ferroelectric response of the films. Si:HfO2 appears to be a rather fragile system: different phases seem close in energy and the system is thus rich in competing phenomena. Nonetheless, it offers ferroelectricity or field‐induced ferroelectricity for elevated annealing conditions up to 1000 °C. Similar to the measures taken for conventional ferroelectrics such as lead zirconate titanate, engineering efforts to guarantee stable interfaces and stoichiometry are mandatory to achieve stable performance in applications such as ferroelectric memories, supercapacitors, or energy harvesting devices.
A flexible version of traditional thin lead zirconium titanate ((Pb1.1Zr0.48Ti0.52O3)‐(PZT)) based ferroelectric random access memory (FeRAM) on silicon shows record performance in flexible arena. The thin PZT layer requires lower operational voltages to achieve coercive electric fields, reduces the sol‐gel coating cycles required (i.e., more cost‐effective), and, fabrication wise, is more suitable for further scaling of lateral dimensions to the nano‐scale due to the larger feature size‐to‐depth aspect ratio (critical for ultra‐high density non‐volatile memory applications). Utilizing the inverse proportionality between substrate's thickness and its flexibility, traditional PZT based FeRAM on silicon is transformed through a transfer‐less manufacturable process into a flexible form that matches organic electronics' flexibility while preserving the superior performance of silicon CMOS electronics. Each memory cell in a FeRAM array consists of two main elements; a select/access transistor, and a storage ferroelectric capacitor. Flexible transistors on silicon have already been reported. In this work, we focus on the storage ferroelectric capacitors, and report, for the first time, its performance after transformation into a flexible version, and assess its key memory parameters while bent at 0.5 cm minimum bending radius.
Bismuth ferrite (BFO)‐based ceramics with large electromechanical response are important in electronic device applications. To better understand their physical mechanisms, a new phase diagram established by temperature dependence of dielectric properties, temperature dependence of piezoelectric coefficient, and the evolution of their properties is proposed to explain the contribution of piezoelectric and strain response by comparing ferroelectric (FE) and relaxor ferroelectric (RFE) compositions. The FE components with macrodomains have large piezoelectric constant (
Antiferroelectric ceramics with extraordinary energy‐storage density have gained exponentially soaring attention for their applications in pulsed power capacitors. Nevertheless, high energy dissipation is a deficiency of antiferroelectric materials. The modulation of Ba/La‐doped (Pb0.91Ba
Electromagnetic (EM) absorbing and shielding materials have attracted great interests due to the increasing electromagnetic pollutions in the past years. Microstructure plays a crucial role in determining the performance of the above materials. Herein, a scale‐like structure based on Ti3C2 Mxenes is proposed to approach improved EM absorption properties. For the first time, graphite/TiC/Ti3AlC2 (G/TiC/Ti3AlC2) hybrids are fabricated in a molten salts bath and graphite/TiC/Ti3C2 (G/TiC/Ti3C2) hybrids are obtained after Al atoms are etched from G/TiC/Ti3AlC2. In G/TiC/Ti3C2, Ti3C2 sheets are perpendicular to the plane of G/TiC, which like a bionic structure of fish scale. The scale‐like G/TiC/Ti3C2 hybrids are dispersed in paraffin matrix to evaluate the EM properties. Owing to the structure‐induced EM absorption mechanism, G/TiC/Ti3C2 show much enhanced EM absorption ability than those materials without structure design, e.g., G/TiC/Ti3AlC2, pure Ti3C2, G/TiC, and the simple mixture of G/TiC with Ti3C2 (G/TiC+Ti3C2). The minimum reflection coefficient (RC) of G/TiC/Ti3C2 with the sample thickness of 2.1 mm reaches −63 dB and the effective absorption bandwidth (the frequency where RC is lower than −10 dB) is more than 3.5 GHz. The results indicate that the scale‐like structure can greatly improve the EM absorption ability.