2D Tin Monoxide—An Unexplored p‐Type van der Waals Semiconductor: Material Characteristics and Field Effect Transistors

Advanced Electronic Materials - Tập 2 Số 4 - 2016
K.J. Saji1, Kun Tian1, Michael Snure2, Ashutosh Tiwari1
1Nanostructured Materials Research Laboratory, Department of Materials Science & Engineering, University of Utah, Salt Lake City, UT 84112 USA
2Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433, USA

Tóm tắt

2D materials are considered promising candidates for developing next‐generation high‐performance energy efficient electronic, optoelectronic, and valley‐tronic devices. Though metal oxides are widely used in the fabrication of many advanced devices, very little work has been reported on their properties in 2D limit. This article reports the discovery of a new 2D materials system, 2D tin monoxide (SnO). Layer by layer growth of SnO on sapphire and SiO2 substrates is demonstrated using a pulsed laser deposition method. The number of SnO layers is controlled by controlling the number of laser shots during the deposition process. Raman spectroscopic and X‐ray photoelectron spectroscopic analysis confirms the formation of phase pure SnO layers. Field effect transistors (FETs) using few layer SnO channels grown on SiO2 substrates are successfully fabricated. These FETs show typical p‐channel conduction with field effect mobility ranging from 0.05 to 1.9 cm2 V−1 s−1. Field effect mobility varies with the number of SnO layers and decreases on either sides of the optimum layer numbers (12), which is explained based on charge screening and interlayer coupling in layered materials.

Từ khóa


Tài liệu tham khảo

10.1126/science.1102896

10.1021/nn400280c

10.1021/ar500274q

10.1073/pnas.0502848102

10.1021/cr300263a

10.1021/nn504481r

10.1016/j.pmatsci.2015.02.002

10.1039/C0NR00323A

10.1038/nature12385

10.1103/PhysRevB.58.1896

10.1107/S0567740880009934

10.1023/A:1012270927642

10.1063/1.1331102

10.1016/0022-4596(81)90068-2

10.1103/PhysRevB.50.9875

10.1063/1.2964197

10.5573/JSTS.2014.14.5.666

10.1021/nn400852r

10.1149/2.0091509jss

10.1063/1.4731271

10.1002/adma.201101410

10.1021/cm401343a

10.1103/PhysRevB.83.075205

10.1021/acsami.5b02964

10.1149/1.3505288

10.1103/PhysRevB.87.235210

10.1016/j.progsurf.2005.09.002

10.1016/0040-6090(84)90303-1

10.1103/PhysRevB.48.15712

10.1103/PhysRevB.60.14496

10.1039/C4TC02184C

10.1103/PhysRevB.84.155413

10.1016/j.susc.2006.01.150

10.1063/1.3699188

10.1103/PhysRevB.45.6899

10.1021/nl400044m

Kwoka M., 2005, Acta Phys. Slovaca, 55, 331

10.1016/S0040-6090(01)00982-8

10.1021/nn8003313

10.1016/S0039-6028(99)00044-8

10.1039/c3tc31863j

10.1017/CBO9780511750502

10.1088/0022-3727/45/8/085101

10.1002/pssa.200881792

10.1063/1.4916664

10.1103/PhysRevB.33.5953

10.1021/jp9727658

10.1021/jp205148y

10.1103/PhysRevB.74.195128

10.1038/nmat3687

10.1021/nn401053g

10.1021/nn5021538

10.1021/nn501226z

Das S., 2013, Appl. Phys. Lett., 103, 1

10.1002/pssr.201307015