AbstractBismuth ferrite (BFO)‐based ceramics with large electromechanical response are important in electronic device applications. To better understand their physical mechanisms, a new phase diagram established by temperature dependence of dielectric properties, temperature dependence of piezoelectric coefficient, and the evolution of their properties is proposed to explain the contribution of piezoelectric and strain response by comparing ferroelectric (FE) and relaxor ferroelectric (RFE) compositions. The FE components with macrodomains have large piezoelectric constant (d33 of 412 pC/N) at high temperature. The RFE components with nanodomains possess giant strain response (Suni = 0.37%) at 180 °C. Combined with in situ and ex situ techniques, the physical mechanisms behind the enhancement of these properties are explored. Macrodomains and multipolar phase coexistence contribute to the piezoelectricity improvement. Nanodomains and an unstable depolarization temperature (Td) region engineer the strain enhancement, which can promote electric‐field‐induced domain switching, lattice strain, and irreversible phase transition. In particular, the Td region of BiFeO3‐based ceramics has been ignored for several years, although it is actually an effective medium to engineer properties. The proposed phase diagram and dynamic model can be used to well understand the structural origins of large electromechanical properties in BFO‐based ceramics, which can give some guidance to explore materials with excellent properties for different applications.