Si Doped Hafnium Oxide—A “Fragile” Ferroelectric System

Advanced Electronic Materials - Tập 3 Số 10 - 2017
Claudia Richter1, Tony Schenk1, Min Hyuk Park1, Franziska A. Tscharntke1, Everett D. Grimley2, James M. LeBeau2, Chuanzhen Zhou3, Chris M. Fancher2, Jacob L. Jones2, Thomas Mikolajick4,1, Uwe Schroeder1
1NaMLab gGmbH Nöthnitzer Straße 64 01187 Dresden Germany
2Department of Materials Science and Engineering North Carolina State University Raleigh NC 27695‐7907 USA
3Analytical Instrumentation Facility College of Engineering at North Carolina State University Raleigh NC 27696 USA
4Chair of Nanoelectronic Materials, TU Dresden, 01062 Dresden, Germany

Tóm tắt

Abstract

Silicon doped hafnium oxide was the material used in the original report of ferroelectricity in hafnia in 2011. Since then, it has been subject of many further publications including the demonstration of the world's first ferroelectric field‐effect transistor in the state‐of‐the‐art 28 nm technology. Though many studies are conducted with a strong focus on application in memory devices, a comprehensive study on structural stability in these films remains to be seen. In this work, a film thickness of about 36 nm, instead of the 10 nm used in most previous studies, is utilized to carefully probe how the concentration range impacts the evolution of phases, the dopant distribution, the field cycling effects, and their interplay in the macroscopic ferroelectric response of the films. Si:HfO2 appears to be a rather fragile system: different phases seem close in energy and the system is thus rich in competing phenomena. Nonetheless, it offers ferroelectricity or field‐induced ferroelectricity for elevated annealing conditions up to 1000 °C. Similar to the measures taken for conventional ferroelectrics such as lead zirconate titanate, engineering efforts to guarantee stable interfaces and stoichiometry are mandatory to achieve stable performance in applications such as ferroelectric memories, supercapacitors, or energy harvesting devices.

Từ khóa


Tài liệu tham khảo

10.1063/1.4922272

10.1039/C6TC02003H

10.1063/1.4983031

10.1063/1.4939660

10.1063/1.3636417

10.1021/nl302049k

10.7567/JJAP.53.08LE02

10.1039/C6TC04807B

10.1002/adma.201404531

10.1063/1.3634052

10.1002/adfm.201103119

10.1021/acsami.6b03586

10.1063/1.4916707

10.1039/C5NR08346J

Müller J., 2012, 2012 Symp. on VLSI Technology (VLSIT)

10.4028/www.scientific.net/AST.95.136

Polakowski P., 2014, IEEE 6th Int. Memory Workshop (IMW)

10.1002/adfm.201600590

10.1002/aelm.201600173

10.1016/j.mee.2009.03.070

10.1016/j.mee.2017.04.031

10.1063/1.4718440

10.1063/1.4937588

10.1039/C7TC01200D

10.1002/cvde.200906833

10.1149/1.3301663

10.1016/j.nanoen.2017.04.052

10.1111/j.1151-2916.1989.tb07663.x

10.1063/1.4919135

Lines M. E., 1977, Principles and Applications of Ferroelectrics and Related Materials

10.1063/1.3082375

10.1103/PhysRevLett.97.177601

10.1103/PhysRevB.75.224104

10.1063/1.1565180

Schenk T., 2016, PhD Thesis

Schenk T., 2013, Proceedings of the IEEE European Solid‐State Device Research Conference (ESSDERC), 260

Cunningham D., 2014, Honors Scholar Theses

10.1002/pssb.200404935

10.1149/1.2209268

Böscke T. S., 2006, IEEE Int. Electron Devices Meeting (IEDM)

10.1016/j.nanoen.2015.10.005

10.1007/978-3-540-34591-6_3

10.1080/14786444908561372

10.1080/14786445108561354

Hanwell M. D., 2012, J. Chem. Inf. Model., 4, 17

10.1021/acsami.5b05773

10.1063/1.4829064

10.1063/1.4916715

10.1039/C5TC01074H

10.1002/adfm.201603182

F.Chu T.Davenport The Endurance Performance of 0.5 µm FRAM Products; Ramtron International Corporation: Colorado Springs CO http://www.digikey.fi/Web%20Export/Supplier%20Content/ramtron‐1140/pdf/ramtron‐tech‐fram‐endurance.pdf(accessed: February2017).

10.1063/1.4927805

10.1007/978-3-662-04307-3

10.1063/1.3056603

10.1016/S0167-577X(02)00536-0

10.1016/j.tsf.2008.10.007

10.1116/1.4842675

10.1016/j.ultramic.2013.12.004