Thin PZT‐Based Ferroelectric Capacitors on Flexible Silicon for Nonvolatile Memory Applications

Advanced Electronic Materials - Tập 1 Số 6 - 2015
Mohamed T. Ghoneim1, Mohammed A. Zidan2, Mohammed Y. Alnassar3, Amir N. Hanna1, Jürgen Kosel3, K. Saláma2, Muhammad M. Hussain1
1Integrated Nanotechnology Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
2Sensors Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia
3Sensing, Magnetism and Microsystems Lab, King Abdullah University of Science and Technology, Thuwal, 23955-6900 Saudi Arabia

Tóm tắt

A flexible version of traditional thin lead zirconium titanate ((Pb1.1Zr0.48Ti0.52O3)‐(PZT)) based ferroelectric random access memory (FeRAM) on silicon shows record performance in flexible arena. The thin PZT layer requires lower operational voltages to achieve coercive electric fields, reduces the sol‐gel coating cycles required (i.e., more cost‐effective), and, fabrication wise, is more suitable for further scaling of lateral dimensions to the nano‐scale due to the larger feature size‐to‐depth aspect ratio (critical for ultra‐high density non‐volatile memory applications). Utilizing the inverse proportionality between substrate's thickness and its flexibility, traditional PZT based FeRAM on silicon is transformed through a transfer‐less manufacturable process into a flexible form that matches organic electronics' flexibility while preserving the superior performance of silicon CMOS electronics. Each memory cell in a FeRAM array consists of two main elements; a select/access transistor, and a storage ferroelectric capacitor. Flexible transistors on silicon have already been reported. In this work, we focus on the storage ferroelectric capacitors, and report, for the first time, its performance after transformation into a flexible version, and assess its key memory parameters while bent at 0.5 cm minimum bending radius.

Từ khóa


Tài liệu tham khảo

10.1002/adma.201301361

10.1088/0957-4484/24/47/475202

10.1063/1.1644917

Larsen P. K., 1992, ISAF ‘92, Proc. IEEE Int. Symp. on Applications of Ferroelectrics

10.1016/j.mejo.2013.11.015

10.1038/srep00754

10.1021/ja405112s

10.1038/srep05243

10.1109/55.841305

10.1063/1.1392970

Nagel N., 2004, Symp. VLSI Technol., Dig. Tech. Pap., 127, 146

10.1002/adma.200900375

Derbenwick G. F., 2000, Celis Semicond. Corporation

Eshita T., 2014, Int. Symp. Applications of Ferroelectrics and Int. Symp. on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials

J.Evans Embedding FeRAM www.eetimes.com(accessed: December 2014).

Lee S. Y., 2001, Symp. VLSI Technol., Dig. Tech. Pap., 111

10.1002/adfm.201302056

10.1021/nl0349707

10.1021/nn5041608

Endo A., 2005, Mater. Res. Soc. Symp. Proc., 872, 1, 10.1557/PROC-872-J1.3

10.1016/S0141-6359(03)00006-0

10.1063/1.1392970

10.1002/pssa.2211330242

Takashima D., 2011, Symp. NVM Technology

10.1016/j.physb.2005.08.024

ITRS report 2013 emerging research memory devices‐projected and demonstrated parameters.

10.1063/1.3089303

10.1016/j.orgel.2011.08.019

Kerckhof S., 2014, Smart Card Research and Advanced Applications

Hidaka O., 2006, Symp. VLSI Technol., Dig. Tech. Pap.

Shiga H., 2009, IEEE Int. Conf. Solid‐State Circuits

Summerfelt S. R., 2013, IEEE 23rd Int. Symp. on Applications of Ferroelectrics

10.1063/1.4818626

10.1016/j.mee.2012.12.024

10.1039/c2jm30297g

10.1109/LED.2011.2176910

10.1088/0022-3727/45/18/185302

10.1063/1.4757426

10.1016/j.orgel.2011.08.032

10.1016/j.cap.2011.03.011

10.1063/1.3500428

10.1016/j.orgel.2011.04.011

10.1016/j.orgel.2010.02.012

10.1557/JMR.2001.0412

10.1109/TED.2013.2278186

10.1002/pssr.201308209

10.1002/pssr.201206490

10.1016/j.mejo.2014.07.011

10.1063/1.4882647

10.1063/1.4791693

10.1109/TR.2014.2371054

Rojas J. P., 2013, Sci. Rep., 3

10.1002/adma.201470116

10.1002/smll.201301025