Asymmetric Flexible MXene‐Reduced Graphene Oxide Micro‐Supercapacitor

Advanced Electronic Materials - Tập 4 Số 1 - 2018
Cedric Couly1, Mohamed Alhabeb1, Katherine L. Van Aken1, Narendra Kurra1,2, Luisa Gomes1, Adriana M. Navarro‐Suárez1,3, Babak Anasori1, Husam N. Alshareef2, Chuanfang Zhang1
1A. J. Drexel Nanomaterials Institute, Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
2Department of Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-9600 Kingdom of Saudi Arabia
3CIC energiGUNE, Albert Einstein 48, 01510, Miñano, Alava, Spain

Tóm tắt

AbstractCurrent microfabrication of micro‐supercapacitors often involves multistep processing and delicate lithography protocols. In this study, simple fabrication of an asymmetric MXene‐based micro‐supercapacitor that is flexible, binder‐free, and current‐collector‐free is reported. The interdigitated device architecture is fabricated using a custom‐made mask and a scalable spray coating technique onto a flexible, transparent substrate. The electrode materials are comprised of titanium carbide MXene (Ti3C2Tx) and reduced graphene oxide (rGO), which are both 2D layered materials that contribute to the fast ion diffusion in the interdigitated electrode architecture. This MXene‐based asymmetric micro‐supercapacitor operates at a 1 V voltage window, while retaining 97% of the initial capacitance after ten thousand cycles, and exhibits an energy density of 8.6 mW h cm−3 at a power density of 0.2 W cm−3. Further, these micro‐supercapacitors show a high level of flexibility during mechanical bending. Utilizing the ability of Ti3C2Tx‐MXene electrodes to operate at negative potentials in aqueous electrolytes, it is shown that using Ti3C2Tx as a negative electrode and rGO as a positive one in asymmetric architectures is a promising strategy for increasing both energy and power densities of micro‐supercapacitors.

Từ khóa


Tài liệu tham khảo

10.1016/j.nantod.2010.09.001

10.1039/c3ee43526a

10.1038/nnano.2016.196

10.1002/elan.201300238

10.1002/adma.201506133

10.1039/B801151F

10.1126/science.aad3345

10.1016/j.jpowsour.2009.08.085

10.1126/science.1184126

10.1038/nnano.2010.162

10.1016/j.nanoen.2014.02.014

10.1038/ncomms3487

10.1016/j.nanoen.2015.05.031

10.1002/aenm.201401303

10.1002/aenm.201301269

10.1021/acsami.5b12784

10.1002/adfm.201501698

10.1038/nnano.2011.110

10.1002/aenm.201601372

10.1038/ncomms2446

10.1039/C6TA06846D

10.1039/c4ta00958d

10.1002/adma.201301332

10.1021/nl200225j

10.1039/C6EE01717G

10.1126/science.aag2421

10.1021/acsnano.6b05240

10.1126/science.1241488

10.1038/nature13970

10.1038/natrevmats.2016.98

10.1002/adfm.201600357

10.1002/aelm.201600255

10.1016/j.jpowsour.2015.12.036

10.1021/acs.chemmater.5b04250

10.1103/PhysRevB.61.14095

10.1039/B613962K

10.1021/acs.chemmater.5b03216

10.1039/c3nr01139a

10.1002/adma.201102306

10.1002/anie.201412257

10.1073/pnas.1414215111

10.1002/adfm.201203771

10.1021/ja01539a017

10.1038/nnano.2007.451