Visual Dysfunction in Multiple Sclerosis and its Animal Model, Experimental Autoimmune Encephalomyelitis: a Review
Tóm tắt
Tài liệu tham khảo
Bo L, Vedeler CA, Nyland HI, Trapp BD, Mork SJ (2003) Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol 62(7):723–732. https://doi.org/10.1093/jnen/62.7.723
Gray E, Thomas TL, Betmouni S, Scolding N, Love S (2008) Elevated activity and microglial expression of myeloperoxidase in demyelinated cerebral cortex in multiple sclerosis. Brain Pathol 18(1):86–95. https://doi.org/10.1111/j.1750-3639.2007.00110.x
Garcia-Martin E, Rodriguez-Mena D, Herrero R, Almarcegui C, Dolz I, Martin J, Ara JR, Larrosa JM et al (2013) Neuro-ophthalmologic evaluation, quality of life, and functional disability in patients with MS. Neurology 81(1):76–83. https://doi.org/10.1212/WNL.0b013e318299ccd9
Shin T, Kojima T, Tanuma N, Ishihara Y, Matsumoto Y (1995) The subarachnoid space as a site for precursor T cell proliferation and effector T cell selection in experimental autoimmune encephalomyelitis. J Neuroimmunol 56(2):171–178. https://doi.org/10.1016/0165-5728(94)00144-d
Soler B, Ramari C, Valet M, Dalgas U, Feys P (2020) Clinical assessment, management, and rehabilitation of walking impairment in MS: an expert review. Expert Rev Neurother 20(8):875–886. https://doi.org/10.1080/14737175.2020.1801425
Testa V, De Santis N, Scotto R, Pastorino CE, Cellerino M, Olivari S, Morlacchi AJ, Inglese M et al (2020) Neuroaxonal degeneration in patients with multiple sclerosis: an optical coherence tomography and in vivo corneal confocal microscopy study. Cornea 39(10):1221–1226. https://doi.org/10.1097/ICO.0000000000002396
Sailer M, Fischl B, Salat D, Tempelmann C, Schonfeld MA, Busa E, Bodammer N, Heinze HJ et al (2003) Focal thinning of the cerebral cortex in multiple sclerosis. Brain 126(Pt 8):1734–1744. https://doi.org/10.1093/brain/awg175
Donadieu M, Kelly H, Szczupak D, Lin JP, Song Y, Yen CCC, Ye FQ, Kolb H et al (2020) Ultrahigh-resolution MRI reveals extensive cortical demyelination in a nonhuman primate model of multiple sclerosis. Cereb Cortex 31:439–447. https://doi.org/10.1093/cercor/bhaa235
Goektas O, Schmidt F, Bohner G, Erb K, Ludemann L, Dahlslett B, Harms L, Fleiner F (2011) Olfactory bulb volume and olfactory function in patients with multiple sclerosis. Rhinology 49(2):221–226. https://doi.org/10.4193/Rhino10.136
Satue M, Rodrigo MJ, Otin S, Bambo MP, Fuertes MI, Ara JR, Martin J, Polo V et al (2016) Relationship between visual dysfunction and retinal changes in patients with multiple sclerosis. PLoS One 11(6):e0157293. https://doi.org/10.1371/journal.pone.0157293
Britze J, Pihl-Jensen G, Frederiksen JL (2017) Retinal ganglion cell analysis in multiple sclerosis and optic neuritis: a systematic review and meta-analysis. J Neurol 264(9):1837–1853. https://doi.org/10.1007/s00415-017-8531-y
Carcelen-Gadea M, Quintanilla-Bordas C, Gracia-Garcia A, Garcia-Villanueva C, Jannone-Pedro N, Alvarez-Sanchez L, Vilaplana-Dominguez L, Blanco-Hernandez T et al (2019) Functional and structural changes in the visual pathway in multiple sclerosis. Brain Behav 9(12):e01467. https://doi.org/10.1002/brb3.1467
Doty RL, MacGillivray MR, Talab H, Tourbier I, Reish M, Davis S, Cuzzocreo JL, Shepard NT et al (2018) Balance in multiple sclerosis: relationship to central brain regions. Exp Brain Res 236(10):2739–2750. https://doi.org/10.1007/s00221-018-5332-1
Centonze D, Rossi S, Boffa L, Versace V, Palmieri MG, Caramia MD, Bernardi G (2005) CSF from MS patients can induce acute conduction block in the isolated optic nerve. Eur J Neurol 12(1):45–48. https://doi.org/10.1111/j.1468-1331.2004.00946.x
Huang J, Khademi M, Fugger L, Lindhe O, Novakova L, Axelsson M, Malmestrom C, Constantinescu C et al (2020) Inflammation-related plasma and CSF biomarkers for multiple sclerosis. Proc Natl Acad Sci U S A 117(23):12952–12960. https://doi.org/10.1073/pnas.1912839117
Swanborg RH (2001) Experimental autoimmune encephalomyelitis in the rat: lessons in T-cell immunology and autoreactivity. Immunol Rev 184:129–135. https://doi.org/10.1034/j.1600-065x.2001.1840112.x
Lassmann H (2019) The changing concepts in the neuropathology of acquired demyelinating central nervous system disorders. Curr Opin Neurol 32(3):313–319. https://doi.org/10.1097/wco.0000000000000685
Wekerle H (2008) Lessons from multiple sclerosis: models, concepts, observations. Ann Rheum Dis 67(Suppl 3):iii56–iii60. https://doi.org/10.1136/ard.2008.098020
Schmitz K, Tegeder I (2017) Bioluminescence and near-infrared imaging of optic neuritis and brain inflammation in the EAE model of multiple sclerosis in mice. J Vis Exp 121. https://doi.org/10.3791/55321
Shindler KS, Ventura E, Dutt M, Rostami A (2008) Inflammatory demyelination induces axonal injury and retinal ganglion cell apoptosis in experimental optic neuritis. Exp Eye Res 87(3):208–213. https://doi.org/10.1016/j.exer.2008.05.017
Dutt M, Tabuena P, Ventura E, Rostami A, Shindler KS (2010) Timing of corticosteroid therapy is critical to prevent retinal ganglion cell loss in experimental optic neuritis. Invest Ophthalmol Vis Sci 51(3):1439–1445. https://doi.org/10.1167/iovs.09-4009
Meeson AP, Piddlesden S, Morgan BP, Reynolds R (1994) The distribution of inflammatory demyelinated lesions in the central nervous system of rats with antibody-augmented demyelinating experimental allergic encephalomyelitis. Exp Neurol 129(2):299–310. https://doi.org/10.1006/exnr.1994.1172
Hasan M, Min H, Rahaman KA, Muresan AR, Kim H, Han D, Kwon OS (2019) Quantitative proteome analysis of brain subregions and spinal cord from experimental autoimmune encephalomyelitis mice by TMT-based mass spectrometry. Proteomics 19(5):e1800355. https://doi.org/10.1002/pmic.201800355
Shields DC, Tyor WR, Deibler GE, Banik NL (1998) Increased calpain expression in experimental demyelinating optic neuritis: an immunocytochemical study. Brain Res 784(1-2):299–304. https://doi.org/10.1016/s0006-8993(97)01381-4
Das A, Guyton MK, Smith A, Wallace G, McDowell ML, Matzelle DD, Ray SK, Banik NL (2013) Calpain inhibitor attenuated optic nerve damage in acute optic neuritis in rats. J Neurochem 124(1):133–146. https://doi.org/10.1111/jnc.12064
Manogaran P, Samardzija M, Schad AN, Wicki CA, Walker-Egger C, Rudin M, Grimm C, Schippling S (2019) Correction to: Retinal pathology in experimental optic neuritis is characterized by retrograde degeneration and gliosis. Acta Neuropathol Commun 7(1):157. https://doi.org/10.1186/s40478-019-0825-0
Villarroya H, Klein C, Thillaye-Goldenberg B, Eclancher F (2001) Distribution in ocular structures and optic pathways of immunocompetent and glial cells in an experimental allergic encephalomyelitis (EAE) relapsing model. J Neurosci Res 63(6):525–535. https://doi.org/10.1002/jnr.1047
Castoldi V, Marenna S, d’Isa R, Huang SC, De Battista D, Chirizzi C, Chaabane L, Kumar D et al (2020) Non-invasive visual evoked potentials to assess optic nerve involvement in the dark agouti rat model of experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein. Brain Pathol 30(1):137–150. https://doi.org/10.1111/bpa.12762
Hsu M, Rayasam A, Kijak JA, Choi YH, Harding JS, Marcus SA, Karpus WJ, Sandor M et al (2019) Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nat Commun 10(1):229. https://doi.org/10.1038/s41467-018-08163-0
Weller RO (1998) Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J Neuropathol Exp Neurol 57(10):885–894. https://doi.org/10.1097/00005072-199810000-00001
Shin T, Matsumoto Y (2001) A quantitative analysis of CD45Rlow CD4+ T cells in the subarachnoid space of Lewis rats with autoimmune encephalomyelitis. Immunol Investig 30(1):57–64. https://doi.org/10.1081/imm-100103691
Jouve L, Benrabah R, Héron E, Bodaghi B, Le Hoang P, Touitou V (2017) Multiple sclerosis-related uveitis: does MS treatment affect uveitis course? Ocul Immunol Inflamm 25(3):302–307. https://doi.org/10.3109/09273948.2015.1125508
Fairless R, Williams SK, Hoffmann DB, Stojic A, Hochmeister S, Schmitz F, Storch MK, Diem R (2012) Preclinical retinal neurodegeneration in a model of multiple sclerosis. J Neurosci 32(16):5585–5597. https://doi.org/10.1523/JNEUROSCI.5705-11.2012
Adamus G, Machnicki M, Amundson D, Adlard K, Offner H (1997) Similar pattern of MCP-1 expression in spinal cords and eyes of Lewis rats with experimental autoimmune encephalomyelitis associated anterior uveitis. J Neurosci Res 50(4):531–538. https://doi.org/10.1002/(sici)1097-4547(19971115)50:4<531::aid-jnr4>3.0.co;2-f
Adamus G, Sugden B, Arendt A, Hargrave PA (2001) Importance of cryptic myelin basic protein epitopes in the pathogenicity of acute and recurrent anterior uveitis associated with EAE. J Neuroimmunol 113(2):212–219. https://doi.org/10.1016/s0165-5728(00)00439-2
Mastorakos P, McGavern D (2019) The anatomy and immunology of vasculature in the central nervous system. Sci Immunol 4(37). https://doi.org/10.1126/sciimmunol.aav0492
Horstmann L, Kuehn S, Pedreiturria X, Haak K, Pfarrer C, Dick HB, Kleiter I, Joachim SC (2016) Microglia response in retina and optic nerve in chronic experimental autoimmune encephalomyelitis. J Neuroimmunol 298:32–41. https://doi.org/10.1016/j.jneuroim.2016.06.008
Jin J, Smith MD, Kersbergen CJ, Kam TI, Viswanathan M, Martin K, Dawson TM, Dawson VL et al (2019) Glial pathology and retinal neurotoxicity in the anterior visual pathway in experimental autoimmune encephalomyelitis. Acta Neuropathol Commun 7(1):125. https://doi.org/10.1186/s40478-019-0767-6
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC (2016) Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 51:1–40. https://doi.org/10.1016/j.preteyeres.2015.06.003
Lefevere E, Salinas-Navarro M, Andries L, Noterdaeme L, Etienne I, Van Wonterghem E, Vinckier S, Davis BM et al (2020) Tightening the retinal glia limitans attenuates neuroinflammation after optic nerve injury. Glia 68(12):2643–2660. https://doi.org/10.1002/glia.23875
Sonia D’Souza C, Li Z, Luke Maxwell D, Trusler O, Murphy M, Crewther S, Peter K, Orian JM (2018) Platelets drive inflammation and target gray matter and the retina in autoimmune-mediated encephalomyelitis. J Neuropathol Exp Neurol 77(7):567–576. https://doi.org/10.1093/jnen/nly032
Sonn I, Nakamura M, Renault-Mihara F, Okano H (2020) Polarization of reactive astrocytes in response to spinal cord injury is enhanced by M2 macrophage-mediated activation of Wnt/beta-Catenin pathway. Mol Neurobiol 57(4):1847–1862. https://doi.org/10.1007/s12035-019-01851-y
Lloyd AF, Miron VE (2019) The pro-remyelination properties of microglia in the central nervous system. Nat Rev Neurol 15(8):447–458. https://doi.org/10.1038/s41582-019-0184-2
Eastlake K, Luis J, Limb GA (2020) Potential of Muller glia for retina neuroprotection. Curr Eye Res 45(3):339–348. https://doi.org/10.1080/02713683.2019.1648831
Shin T, Kang B, Tanuma N, Matsumoto Y, Wie M, Ahn M, Kang J (2001) Intrathecal administration of endothelin-1 receptor antagonist ameliorates autoimmune encephalomyelitis in Lewis rats. Neuroreport 12(7):1465–1468. https://doi.org/10.1097/00001756-200105250-00034
Pradeep T, Mehra D, Le PH (2020) Histology, Eye. In: StatPearls. © 2020, StatPearls Publishing LLC., Treasure Island FL,