Olfactory Dysfunction in CNS Neuroimmunological Disorders: a Review

Molecular Neurobiology - Tập 56 - Trang 3714-3721 - 2018
Taekyun Shin1, Jeongtae Kim1, Meejung Ahn1, Changjong Moon2
1Department of Veterinary Anatomy, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju, Republic of Korea
2Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea

Tóm tắt

Olfactory dysfunction is deeply associated with quality of human life in the aging population. Olfactory dysfunction is an occasional presymptomatic sign of neuroimmunological multiple sclerosis, neuromyelitis optica, and systemic lupus erythematosus. Olfaction is initially processed by olfactory receptor cells that capture odor molecules, and the signals are transmitted to the glomeruli in the olfactory bulbs via olfactory nerves and processed in the primary olfactory cortex in the brain. Damage to either the olfactory receptor cells or the olfactory bulb and primary olfactory cortex may influence olfactory functioning. A close link between neuroimmunological disorders and olfactory dysfunction has been reported in patients and animal models. This review summarizes the literature data concerning olfactory dysfunction in autoimmune diseases including multiple sclerosis, neuromyelitis optica, and systemic lupus erythematosus; animal models thereof; and inflammation in the olfactory bulb.

Tài liệu tham khảo

Huttenbrink KB, Hummel T, Berg D, Gasser T, Hahner A (2013) Olfactory dysfunction: common in later life and early warning of neurodegenerative disease. Dtsch Arztebl Int 110(1–2):1–7. https://doi.org/10.3238/arztebl.2013.0001 Strous RD, Shoenfeld Y (2006) To smell the immune system: olfaction, autoimmunity and brain involvement. Autoimmun Rev 6(1):54–60. https://doi.org/10.1016/j.autrev.2006.07.002 Durrant DM, Ghosh S, Klein RS (2016) The olfactory bulb: an immunosensory effector organ during neurotropic viral infections. ACS Chem Neurosci 7(4):464–469. https://doi.org/10.1021/acschemneuro.6b00043 van Riel D, Verdijk R, Kuiken T (2015) The olfactory nerve: a shortcut for influenza and other viral diseases into the central nervous system. J Pathol 235(2):277–287. https://doi.org/10.1002/path.4461 Imamura F, Hasegawa-Ishii S (2016) Environmental toxicants-induced immune responses in the olfactory mucosa. Front Immunol 7:475. https://doi.org/10.3389/fimmu.2016.00475 Becker S, Pflugbeil C, Groger M, Canis M, Ledderose GJ, Kramer MF (2012) Olfactory dysfunction in seasonal and perennial allergic rhinitis. Acta Otolaryngol 132(7):763–768. https://doi.org/10.3109/00016489.2012.656764 Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11(3):188–200. https://doi.org/10.1038/nrn2789 Dibattista M, Reisert J (2016) The odorant receptor-dependent role of olfactory marker protein in olfactory receptor neurons. J Neurosci 36(10):2995–3006. https://doi.org/10.1523/JNEUROSCI.4209-15.2016 Mouret A, Murray K, Lledo PM (2009) Centrifugal drive onto local inhibitory interneurons of the olfactory bulb. Ann N Y Acad Sci 1170:239–254. https://doi.org/10.1111/j.1749-6632.2009.03913.x Gottfried JA, Winston JS, Dolan RJ (2006) Dissociable codes of odor quality and odorant structure in human piriform cortex. Neuron 49(3):467–479. https://doi.org/10.1016/j.neuron.2006.01.007 Mori K, Nagao H, Yoshihara Y (1999) The olfactory bulb: coding and processing of odor molecule information. Science 286(5440):711–715 Murphy C, Schubert CR, Cruickshanks KJ, Klein BE, Klein R, Nondahl DM (2002) Prevalence of olfactory impairment in older adults. JAMA 288(18):2307–2312 Doty RL, Kamath V (2014) The influences of age on olfaction: a review. Front Psychol 5:20. https://doi.org/10.3389/fpsyg.2014.00020 Ruan Y, Zheng XY, Zhang HL, Zhu W, Zhu J (2012) Olfactory dysfunctions in neurodegenerative disorders. J Neurosci Res 90(9):1693–1700. https://doi.org/10.1002/jnr.23054 Doty RL (2017) Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? Lancet Neurol 16(6):478–488. https://doi.org/10.1016/S1474-4422(17)30123-0 Pimentel ML (2016) Olfactory dysfunction as a marker of multiple sclerosis progression. Arq Neuropsiquiatr 74(9):693–694. https://doi.org/10.1590/0004-282X20160133 Bombini MF, Peres FA, Lapa AT, Sinicato NA, Quental BR, Pincelli ASM, Amaral TN, Gomes CC et al (2018) Olfactory function in systemic lupus erythematosus and systemic sclerosis. A longitudinal study and review of the literature. Autoimmun Rev 17(4):405–412. https://doi.org/10.1016/j.autrev.2018.02.002 Lassmann H (2018) Multiple sclerosis pathology. Cold Spring Harbor Perspect Med 8(3). https://doi.org/10.1101/cshperspect.a028936 Oukka M (2007) Interplay between pathogenic Th17 and regulatory T cells. Ann Rheum Dis 66(Suppl 3):iii87–iii90. https://doi.org/10.1136/ard.2007.078527 Legroux L, Arbour N (2015) Multiple sclerosis and T lymphocytes: an entangled story. J NeuroImmune Pharmacol 10(4):528–546. https://doi.org/10.1007/s11481-015-9614-0 Lassmann H (2014) Mechanisms of white matter damage in multiple sclerosis. Glia 62(11):1816–1830. https://doi.org/10.1002/glia.22597 Lindner M, Klotz L, Wiendl H (2018) Mechanisms underlying lesion development and lesion distribution in CNS autoimmunity. J Neurochem 146:122–132. https://doi.org/10.1111/jnc.14339 Mars LT, Saikali P, Liblau RS, Arbour N (2011) Contribution of CD8 T lymphocytes to the immuno-pathogenesis of multiple sclerosis and its animal models. Biochim Biophys Acta 1812(2):151–161. https://doi.org/10.1016/j.bbadis.2010.07.006 Doty RL, Li C, Mannon LJ, Yousem DM (1998) Olfactory dysfunction in multiple sclerosis. Relation to plaque load in inferior frontal and temporal lobes. Ann N Y Acad Sci 855:781–786 Doty RL, Li C, Mannon LJ, Yousem DM (1999) Olfactory dysfunction in multiple sclerosis: relation to longitudinal changes in plaque numbers in central olfactory structures. Neurology 53(4):880–882 Good KP, Tourbier IA, Moberg P, Cuzzocreo JL, Geckle RJ, Yousem DM, Pham DL, Doty RL (2017) Unilateral olfactory sensitivity in multiple sclerosis. Physiol Behav 168:24–30. https://doi.org/10.1016/j.physbeh.2016.10.017 Schmidt FA, Goktas O, Harms L, Bohner G, Erb K, Dahlslett B, Fleiner F (2011) Structural correlates of taste and smell loss in encephalitis disseminata. PLoS One 6(5):e19702. https://doi.org/10.1371/journal.pone.0019702 Rhiannon JJ (2008) Systemic lupus erythematosus involving the nervous system: presentation, pathogenesis, and management. Clin Rev Allergy Immunol 34(3):356–360. https://doi.org/10.1007/s12016-007-8052-z Jafri K, Patterson SL, Lanata C (2017) Central nervous system manifestations of systemic lupus erythematosus. Rheum Dis Clin N Am 43(4):531–545. https://doi.org/10.1016/j.rdc.2017.06.003 Engelhardt B, Carare RO, Bechmann I, Flugel A, Laman JD, Weller RO (2016) Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 132(3):317–338. https://doi.org/10.1007/s00401-016-1606-5 Deng GM (2018) Pathogenesis of skin injury of systemic lupus erythematosus. Curr Rheumatol Rep 20(2):5. https://doi.org/10.1007/s11926-018-0713-9 Khan SQ, Khan I, Gupta V (2018) CD11b activity modulates pathogenesis of lupus nephritis. Front Med 5:52. https://doi.org/10.3389/fmed.2018.00052 Tselios K, Urowitz MB (2017) Cardiovascular and pulmonary manifestations of systemic lupus erythematosus. Curr Rheumatol Rev 13(3):206–218. https://doi.org/10.2174/1573397113666170704102444 Dammacco R (2017) Systemic lupus erythematosus and ocular involvement: an overview. Clin Exp Med:135–149. https://doi.org/10.1007/s10238-017-0479-9 Bugala K, Mazurek A, Gryga K, Komar M, Kopec G, Musial J, Podolec P, Perricone C et al (2018) Influence of autoimmunity and inflammation on endothelial function and thrombosis in systemic lupus erythematosus patients. Clin Rheumatol 37:2087–2093. https://doi.org/10.1007/s10067-018-4104-4 Plazak W, Pasowicz M, Kostkiewicz M, Podolec J, Tomkiewicz-Pajak L, Musial J, Podolec P (2011) Influence of chronic inflammation and autoimmunity on coronary calcifications and myocardial perfusion defects in systemic lupus erythematosus patients. Inflamm Res 60(10):973–980. https://doi.org/10.1007/s00011-011-0358-x Sabbadini MG, Manfredi AA, Bozzolo E, Ferrario L, Rugarli C, Scorza R, Origgi L, Vanoli M et al (1999) Central nervous system involvement in systemic lupus erythematosus patients without overt neuropsychiatric manifestations. Lupus 8(1):11–19. https://doi.org/10.1191/096120399678847344 Sanna G, Piga M, Terryberry JW, Peltz MT, Giagheddu S, Satta L, Ahmed A, Cauli A et al (2000) Central nervous system involvement in systemic lupus erythematosus: cerebral imaging and serological profile in patients with and without overt neuropsychiatric manifestations. Lupus 9(8):573–583. https://doi.org/10.1191/096120300678828695 Appenzeller S, Pike GB, Clarke AE (2008) Magnetic resonance imaging in the evaluation of central nervous system manifestations in systemic lupus erythematosus. Clin Rev Allergy Immunol 34(3):361–366. https://doi.org/10.1007/s12016-007-8060-z Shin T, Kojima T, Tanuma N, Ishihara Y, Matsumoto Y (1995) The subarachnoid space as a site for precursor T cell proliferation and effector T cell selection in experimental autoimmune encephalomyelitis. J Neuroimmunol 56(2):171–178 Shrestha B, Jiang X, Ge S, Paul D, Chianchiano P, Pachter JS (2017) Spatiotemporal resolution of spinal meningeal and parenchymal inflammation during experimental autoimmune encephalomyelitis. Neurobiol Dis 108:159–172. https://doi.org/10.1016/j.nbd.2017.08.010 Shin T, Ahn M, Matsumoto Y (2012) Mechanism of experimental autoimmune encephalomyelitis in Lewis rats: recent insights from macrophages. Anat Cell Biol 45(3):141–148. https://doi.org/10.5115/acb.2012.45.3.141 Louveau A, Da Mesquita S, Kipnis J (2016) Lymphatics in neurological disorders: a neuro-lympho-vascular component of multiple sclerosis and Alzheimer’s disease? Neuron 91(5):957–973. https://doi.org/10.1016/j.neuron.2016.08.027 Shin T, Matsumoto Y (2001) A quantitative analysis of CD45Rlow CD4+ T cells in the subarachnoid space of Lewis rats with autoimmune encephalomyelitis. Immunol Investig 30(1):57–64 Matsumoto Y, Abe S, Tsuchida M, Hirahara H, Abo T, Shin T, Tanuma N, Kojima T et al (1996) Characterization of CD4-CD8- T cell receptor alpha beta + T cells appearing in the subarachnoid space of rats with autoimmune encephalomyelitis. Eur J Immunol 26(6):1328–1334. https://doi.org/10.1002/eji.1830260623 Shin T, Kang B, Tanuma N, Matsumoto Y, Wie M, Ahn M, Kang J (2001) Intrathecal administration of endothelin-1 receptor antagonist ameliorates autoimmune encephalomyelitis in Lewis rats. Neuroreport 12(7):1465–1468 Zivadinov R, Zorzon M, Monti Bragadin L, Pagliaro G, Cazzato G (1999) Olfactory loss in multiple sclerosis. J Neurol Sci 168(2):127–130 Atalar AC, Erdal Y, Tekin B, Yildiz M, Akdogan O, Emre U (2018) Olfactory dysfunction in multiple sclerosis. Mult Scler Relat Disord 21:92–96. https://doi.org/10.1016/j.msard.2018.02.032 Batur Caglayan HZ, Irkec C, Nazliel B, Akyol Gurses A, Capraz I (2016) Olfactory functioning in early multiple sclerosis: Sniffin’ sticks test study. Neuropsychiatr Dis Treat 12:2143–2147. https://doi.org/10.2147/NDT.S116195 Schmidt FA, Fleiner F, Harms L, Bohner G, Erb K, Ludemann L, Dahlslett B, Goktas O (2011) Pathological changes of the chemosensory function in multiple sclerosis - an MRI study. Rofo 183(6):531–535. https://doi.org/10.1055/s-0031-1273290 Lucassen EB, Turel A, Knehans A, Huang X, Eslinger P (2016) Olfactory dysfunction in multiple sclerosis: a scoping review of the literature. Mult Scler Relat Disord 6:1–9. https://doi.org/10.1016/j.msard.2015.12.002 Uecker FC, Olze H, Kunte H, Gerz C, Goktas O, Harms L, Schmidt FA (2017) Longitudinal testing of olfactory and gustatory function in patients with multiple sclerosis. PLoS One 12(1):e0170492. https://doi.org/10.1371/journal.pone.0170492 Ciurleo R, Bonanno L, De Salvo S, Romeo L, Rifici C, Sessa E, D’Aleo G, Russo M et al (2018) Olfactory dysfunction as a prognostic marker for disability progression in multiple sclerosis: an olfactory event related potential study. PLoS One 13(4):e0196006. https://doi.org/10.1371/journal.pone.0196006 Hawkes CH, Shephard BC, Kobal G (1997) Assessment of olfaction in multiple sclerosis: evidence of dysfunction by olfactory evoked response and identification tests. J Neurol Neurosurg Psychiatry 63(2):145–151 Erb K, Bohner G, Harms L, Goektas O, Fleiner F, Dommes E, Schmidt FA, Dahlslett B et al (2012) Olfactory function in patients with multiple sclerosis: a diffusion tensor imaging study. J Neurol Sci 316(1–2):56–60. https://doi.org/10.1016/j.jns.2012.01.031 Tanik N, Serin HI, Celikbilek A, Inan LE, Gundogdu F (2015) Olfactory bulb and olfactory sulcus depths are associated with disease duration and attack frequency in multiple sclerosis patients. J Neurol Sci 358(1–2):304–307. https://doi.org/10.1016/j.jns.2015.09.016 Yaldizli O, Penner IK, Yonekawa T, Naegelin Y, Kuhle J, Pardini M, Chard DT, Stippich C et al (2016) The association between olfactory bulb volume, cognitive dysfunction, physical disability and depression in multiple sclerosis. Eur J Neurol 23(3):510–519. https://doi.org/10.1111/ene.12891 Goektas O, Schmidt F, Bohner G, Erb K, Ludemann L, Dahlslett B, Harms L, Fleiner F (2011) Olfactory bulb volume and olfactory function in patients with multiple sclerosis. Rhinology 49(2):221–226. https://doi.org/10.4193/Rhino10.136 Zorzon M, Ukmar M, Bragadin LM, Zanier F, Antonello RM, Cazzato G, Zivadinov R (2000) Olfactory dysfunction and extent of white matter abnormalities in multiple sclerosis: a clinical and MR study. Mult Scler 6(6):386–390. https://doi.org/10.1177/135245850000600605 Schmidt FA, Maas MB, Geran R, Schmidt C, Kunte H, Ruprecht K, Paul F, Goktas O et al (2017) Olfactory dysfunction in patients with primary progressive MS. Neurol Neuroimmunol Neuroinflamm 4(4):e369. https://doi.org/10.1212/NXI.0000000000000369 Tepavcevic V, Lazarini F, Alfaro-Cervello C, Kerninon C, Yoshikawa K, Garcia-Verdugo JM, Lledo PM, Nait-Oumesmar B et al (2011) Inflammation-induced subventricular zone dysfunction leads to olfactory deficits in a targeted mouse model of multiple sclerosis. J Clin Invest 121(12):4722–4734. https://doi.org/10.1172/JCI59145 Kim J, Choi Y, Ahn M, Jung K, Shin T (2018) Olfactory dysfunction in autoimmune central nervous system neuroinflammation. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1001-4 Schmidt F, Goktas O, Jarius S, Wildemann B, Ruprecht K, Paul F, Harms L (2013) Olfactory dysfunction in patients with neuromyelitis optica. Mult Scler Int 2013:654501. https://doi.org/10.1155/2013/654501 DeLuca GC, Joseph A, George J, Yates RL, Hamard M, Hofer M, Esiri MM (2015) Olfactory pathology in central nervous system demyelinating diseases. Brain Pathol 25(5):543–551. https://doi.org/10.1111/bpa.12209 Zhang LJ, Zhao N, Fu Y, Zhang DQ, Wang J, Qin W, Zhang N, Wood K et al (2015) Olfactory dysfunction in neuromyelitis optica spectrum disorders. J Neurol 262(8):1890–1898. https://doi.org/10.1007/s00415-015-7787-3 Li LM, Guo HY, Zhao N, Zhang LJ, Zhang N, Liu J, Yang L (2018) Comparison of olfactory function between neuromyelitis optica and multiple sclerosis. Int J Neurosci 128(8):772–777. https://doi.org/10.1080/00207454.2018.1424152 Shoenfeld N, Agmon-Levin N, Flitman-Katzevman I, Paran D, Katz BS, Kivity S, Langevitz P, Zandman-Goddard G et al (2009) The sense of smell in systemic lupus erythematosus. Arthritis Rheum 60(5):1484–1487. https://doi.org/10.1002/art.24491 Dos Passos GR, Oliveira LM, da Costa BK, Apostolos-Pereira SL, Callegaro D, Fujihara K, Sato DK (2018) MOG-IgG-associated optic neuritis, encephalitis, and myelitis: lessons learned from neuromyelitis optica spectrum disorder. Front Neurol 9:217. https://doi.org/10.3389/fneur.2018.00217 Zvaifler NJ, Bluestein HG (1982) The pathogenesis of central nervous system manifestations of systemic lupus erythematosus. Arthritis Rheum 25(7):862–866 Kapadia M, Stanojcic M, Earls AM, Pulapaka S, Lee J, Sakic B (2012) Altered olfactory function in the MRL model of CNS lupus. Behav Brain Res 234(2):303–311. https://doi.org/10.1016/j.bbr.2012.07.005 Kapadia M, Zhao H, Ma D, Sakic B (2017) Sustained immunosuppression alters olfactory function in the MRL model of CNS lupus. J NeuroImmune Pharmacol 12(3):555–564. https://doi.org/10.1007/s11481-017-9745-6 Attems J, Walker L, Jellinger KA (2014) Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol 127(4):459–475. https://doi.org/10.1007/s00401-014-1261-7 Meyer A, Wree A, Gunther R, Holzmann C, Schmitt O, Rolfs A, Witt M (2017) Increased regenerative capacity of the olfactory epithelium in Niemann-Pick disease type C1. Int J Mol Sci 18(4). https://doi.org/10.3390/ijms18040777 Seo Y, Kim HS, Kang I, Choi SW, Shin TH, Shin JH, Lee BC, Lee JY et al (2016) Cathepsin S contributes to microglia-mediated olfactory dysfunction through the regulation of Cx3cl1-Cx3cr1 axis in a Niemann-Pick disease type C1 model. Glia 64(12):2291–2305. https://doi.org/10.1002/glia.23077 Seo Y, Kim HS, Shin Y, Kang I, Choi SW, Yu KR, Seo KW, Kang KS (2014) Excessive microglial activation aggravates olfactory dysfunction by impeding the survival of newborn neurons in the olfactory bulb of Niemann-Pick disease type C1 mice. Biochim Biophys Acta 1842(11):2193–2203. https://doi.org/10.1016/j.bbadis.2014.08.005 Hovakimyan M, Meyer A, Lukas J, Luo J, Gudziol V, Hummel T, Rolfs A, Wree A et al (2013) Olfactory deficits in Niemann-Pick type C1 (NPC1) disease. PLoS One 8(12):e82216. https://doi.org/10.1371/journal.pone.0082216 Fleiner F, Dahlslett SB, Schmidt F, Harms L, Goektas O (2010) Olfactory and gustatory function in patients with multiple sclerosis. Am J Rhinol Allergy 24(5):e93–e97. https://doi.org/10.2500/ajra.2010.24.3506 Lutterotti A, Vedovello M, Reindl M, Ehling R, DiPauli F, Kuenz B, Gneiss C, Deisenhammer F et al (2011) Olfactory threshold is impaired in early, active multiple sclerosis. Mult Scler 17(8):964–969. https://doi.org/10.1177/1352458511399798 Sokpor G, Abbas E, Rosenbusch J, Staiger JF, Tuoc T (2018) Transcriptional and epigenetic control of mammalian olfactory epithelium development. Mol Neurobiol. https://doi.org/10.1007/s12035-018-0987-y Beites CL, Kawauchi S, Crocker CE, Calof AL (2005) Identification and molecular regulation of neural stem cells in the olfactory epithelium. Exp Cell Res 306(2):309–316. https://doi.org/10.1016/j.yexcr.2005.03.027