Molecular Neurobiology
1559-1182
0893-7648
Cơ quản chủ quản: Humana Press , SPRINGER
Lĩnh vực:
Cellular and Molecular NeuroscienceNeurologyNeuroscience (miscellaneous)
Các bài báo tiêu biểu
Metabolic Changes Detected by Ex Vivo High Resolution 1H NMR Spectroscopy in the Striatum of 6-OHDA-Induced Parkinson’s Rat
Tập 47 - Trang 123-130 - 2012
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the progressive loss of the dopaminergic neurons; however, its crucial mechanism of the metabolic changes of neurotransmitters remains ambiguous. The pathological mechanism of PD might involve cerebral metabolism perturbations. In this study, ex vivo proton nuclear magnetic resonance (1H NMR) was used to determine the level changes of 13 metabolites in the bilateral striatum of 6-hydroxydopamine (6-OHDA)-induced PD rats. The results showed that, in the right striatum of 6-OHDA-induced PD rats, increased levels of glutamate (Glu) and γ-aminobutyric acid (GABA) concomitantly with decreased level of glutamine (Gln) were observed compared to the control. Whereas, in the left striatum of 6-OHDA-induced PD rats, increased level of Glu with decreased level of GABA and unchanged Gln were observed. Other cerebral metabolites including lactate, alanine, creatine, succinate, taurine, and glycine were also found to have some perturbations. The observed metabolic changes for Glu, Gln, and GABA are mostly likely the result of a shift in the steady-state equilibrium of the Gln-Glu-GABA metabolic cycle between astrocytes and neurons. The altered Gln and GABA levels are most likely as a strategy to protect neurons from Glu excitotoxic injury after striatal dopamine depletion. Changes in energy metabolism and tricarboxylic acid cycle might be involved in the pathogenesis of PD.
Associations of Blood and Cerebrospinal Fluid Aβ and tau Levels with Renal Function
Tập 60 - Trang 5343-5351 - 2023
Amyloid β (Aβ) and tau play pivotal roles in the pathogenesis of Alzheimer’s disease (AD). Previous studies have shown that brain-derived Aβ and tau can be cleared through transport into the periphery, and the kidneys may be vital organs involved in the clearance of Aβ and tau. However, the effects of deficiency in the clearance of Aβ and tau by the kidneys on brain AD-type pathologies in humans remain largely unknown. In this study, we first recruited 41 patients with chronic kidney disease (CKD) and 40 age- and sex-matched controls with normal renal function to analyze the associations of the estimated glomerular filtration rate (eGFR) with plasma Aβ and tau levels. To analyze the associations of eGFR with cerebrospinal fluid (CSF) AD biomarkers, we recruited 42 cognitively normal CKD patients and 150 cognitively normal controls with CSF samples. Compared with controls with normal renal function, CKD patients had higher plasma levels of Aβ40, Aβ42 and total tau (T-tau), lower CSF levels of Aβ40 and Aβ42 and higher levels of CSF T-tau/Aβ42 and phosphorylated tau (P-tau)/Aβ42. Plasma Aβ40, Aβ42, and T-tau levels were negatively correlated with eGFR. In addition, eGFR was negatively correlated with CSF levels of T-tau, T-tau/Aβ42, and P-tau/Aβ42 but positively correlated with Mini-Mental State Examination (MMSE) scores. Thus, this study showed that the decline in renal function was correlated with abnormal AD biomarkers and cognitive decline, which provides human evidence that renal function may be involved in the pathogenesis of AD.
The Interaction of Mitochondrial Biogenesis and Fission/Fusion Mediated by PGC-1α Regulates Rotenone-Induced Dopaminergic Neurotoxicity
Tập 54 Số 5 - Trang 3783-3797 - 2017
Paradoxical signal transduction in neurobiological systems
Tập 24 - Trang 145-168 - 2001
Information processing in neurobiological systems is commonly thought to rely on the assessment of a signal-to-noise ratio as the key mechanism of signal detection; it assumes and requires that both signal and noise are concurrently available. An alternative theory holds that detection proceeds by the system appreciating any instantaneous input by the input’s departure from the moving average of past activity. The evidence reviewed here suggests that this latter transduction mechanism provides a unique, formal account of the highly dynamic, neuroadaptative plasticity (i.e., tolerance, dependence, sensitization) that ensues upon μ-opioid receptor activation. The mechanism would appear already to operate with the receptor-G protein coupling that occurs upon agonist binding to μ-opioid receptors, and also with highly integrated responses such as whole-organism analgesia. The mechanism may perhaps operate ubiquitously with further neuronal and non-neuronal, cell surface, and intracellular-signaling systems, and may govern the experience-dependent regulation of synaptic strength. The transduction mechanism defines a continuously evolving process; the process’s most peculiar feature is that it makes any input generate not one but two outcomes that are paradoxical, or opposite in sign.
Neuregulins 1, 2, and 3 Promote Early Neurite Outgrowth in ErbB4-Expressing Cortical GABAergic Interneurons
Tập 57 Số 8 - Trang 3568-3588 - 2020
Astragaloside IV, a Natural PPARγ Agonist, Reduces Aβ Production in Alzheimer’s Disease Through Inhibition of BACE1
Tập 54 - Trang 2939-2949 - 2016
A number of epidemiological studies have established a link between Alzheimer’s disease (AD) and diabetes mellitus (DM). So, nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) plays an important role in the treatment of AD. However, current PPARγ-targeting drugs such as thiazolidinediones (TZDs) are associated with undesirable side effects. We identified herbal extract with a small molecular, astragaloside IV (AS-IV), as a selective PPARγ natural agonist in nervous cells by developing a PPAR-PPRE pathway regulatory system. Cultured SH-SY5Y cells transfected with pEGFP-N1-BACE1 were treated with AS-IV for 24 h or AS-IV plus the PPAR-γ antagonist GW9662 in vitro. APP/PS1 mice were intragastrically treated with AS-IV or AS-IV plus the GW9662 every 48 h for 3 months. Immunofluorescence, western blotting, and real-time PCR were used to examine the expression of PPARγ and BACE1. Immunohistochemical staining was performed to analyze the distribution of Aβ plaques in the APP/PS1 mouse brain. The levels of Aβ were determined using ELISA kits. AS-IV was shown to be a PPARγ agonist by establishing a high-throughput screening model for PPARγ agonists. The results showed that AS-IV treatment increased activity of PPARγ and inhibited BACE1 in vitro. As a result, Aβ levels decreased significantly. GW9662, which is a PPARγ antagonist, significantly blocked the beneficial role of AS-IV. In vivo, AS-IV treatment increased PPARγ and BACE1 expression and reduced neuritic plaque formation and Aβ levels in the brains of APP/PS1 mice. These effects of AS-IV could be effectively inhibited by GW9662. These results indicate that AS-IV may be a natural PPARγ agonist that suppressed activity of BACE1 and ultimately attenuates generation of Aβ. Therefore, AS-IV may be a promising agent for modulating Aβ-related pathology in AD.
A speculative model of affective illness cyclicity based on patterns of drug tolerance observed in amygdala-kindled seizures
Tập 13 - Trang 33-60 - 1996
In this article, we discuss molecular mechanisms involved in the evolution of amygdala kindling and the episodic loss of response to pharmacological treatments during tolerance development. These phenomena allow us to consider how similar principles (in different neurochemical systems) could account for illness progression, cyclicity, and drug tolerance in affective disorders. We describe the phenomenon of amygdala-kindled seizures episodically breaking through effective daily pharmacotherapy with carbamazepine and valproate, suggesting that these observations could reflect the balance of pathological vs compensatory illness-induced changes in gene expression. Under certain circumstances, amygdala-kindled animals that were initially drug responsive can develop highly individualized patterns of seizure breakthroughs progressing toward a complete loss of drug efficacy. This initial drug efficacy may reflect the combination of drug-related exogenous neurochemical mechanisms and illness-induced endogenous compensatory mechanisms. However, we postulate that when seizures are inhibited, the endogenous illness-induced adaptations dissipate (the “time-off seizure” effect), leading to the re-emergence of seizures, a re-induction of a new, but diminished, set of endogenous compensatory mechanisms, and a temporary period of renewed drug efficacy. As this pattern repeats, an intermittent or cyclic response to the anticonvulsant treatment emerges, leading toward complete drug tolerance. We also postulate that the cyclic pattern accelerates over time because of both the failure of robust illness-induced endogenous adaptations to emerge and the progression in pathophysiological mechanisms (mediated by long-lasting changes in gene expression and their downstream consequences) as a result of repeated occurrences of seizures. In this seizure model, this pattern can be inhibited and drug responsivity can be temporarily reinstated by several manipulations, including lowering illness drive (decreasing the stimulation current.), increasing drug dosage, switching to a new drug that does not show crosstolerance to the original medication, or temporarily discontinuing treatment, allowing the illness to re-emerge in an unmedicated animal. Each of these variables is discussed in relation to the potential relevance to the emergence, progression, and suppression of individual patterns of episodic cyclicity in the recurrent affective disorders. A variety of clinical studies are outlined that specifically test the hypotheses derived from this formulation. Data from animal studies suggest that illness cyclicity can develop from the relative ratio between primary pathological processes and secondary endogenous adaptations (assisted by exogenous medications). If this proposition is verified, it further suggests that illness cyclicity is inherent to the neurobiological processes of episode emergence and amelioration, and one does not need to postulate a separate defect in the biological clock. The formulation predicts that early and aggressive long-term interventions may be optimal in order to prevent illness emergence and progression and its associated accumulating neurobiological, vulnerability factors.
Visual Dysfunction in Multiple Sclerosis and its Animal Model, Experimental Autoimmune Encephalomyelitis: a Review
Tập 58 - Trang 3484-3493 - 2021
Visual disabilities in central nervous system autoimmune diseases such as multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), are important symptoms. Past studies have focused on neuro-inflammatory changes and demyelination in the white matter of the brain and spinal cord. In MS, neuro-inflammatory lesions have been diagnosed in the visual pathway; the lesions may perturb visual function. Similarly, neuropathological changes in the retina and optic nerves have been found in animals with chronic EAE. Although the retina and optic nerves are immunologically privileged sites via the blood–retina barrier and blood–brain barrier, respectively, inflammation can occur via other routes, such as the uvea (e.g., iris and choroid) and cerebrospinal fluid in the meninges. This review primarily addresses the direct involvement of the blood–retina barrier and the blood–brain barrier in the development of retinitis and optic neuritis in EAE models. Additional routes, including pro-inflammatory mediator-filled choroidal and subarachnoid spaces, are also discussed with respect to their roles in EAE-induced visual disability and as analogues of MS in humans.