The autoimmune diseases of the eyes

Autoimmunity Reviews - Tập 15 - Trang 258-271 - 2016
Francisco Assis de Andrade1, Savio Henrique Serafini Fiorot2, Eliezer Israel Benchimol3, Jacqueline Provenzano2, Vanessa Jandre Martins1, Roger Abramino Levy4
1Ophthalmology Department, Centro Oftalmológico Botafogo — COB, Rio de Janeiro, Brazil
2Ophthalmolgy Discipline, Centro de Estudos e Pesquisas Oculistas Associados — CEPOA, Rio de Janeiro, Brazil
3Ophthalmolgy department, Instituto de Pesquisas Evandro Chagas — FIOCRUZ, Rio de Janeiro, Brazil
4Rheumatology Discipline, Universidade do Estado do Rio de Janeiro — UERJ, Rio de Janeiro, Brazil

Tài liệu tham khảo

Forrester, 2012, Good news–bad news: the Yin and Yang of immune privilege in the eye, Front Immunol, 3, 338, 10.3389/fimmu.2012.00338 Qazi, 2010, Corneal transparency: genesis, maintenance and dysfunction, Brain Res Bull, 81, 198, 10.1016/j.brainresbull.2009.05.019 Meek, 1991, Synchrotron X-ray diffraction studies of the cornea, with implications for stromal hydration, Biophys J, 60, 467, 10.1016/S0006-3495(91)82073-2 Studer, 2010, Biomechanical model of human cornea based on stromal microstructure, J Biomech, 43, 836, 10.1016/j.jbiomech.2009.11.021 Hassell, 2010, The molecular basis of corneal transparency, Exp Eye Res, 91, 326, 10.1016/j.exer.2010.06.021 Hatami-Marbini, 2013, Hydration dependent biomechanical properties of the corneal stroma, Exp Eye Res, 116, 47, 10.1016/j.exer.2013.07.016 Meek, 2004, The organization of collagen in the corneal stroma, Exp Eye Res, 78, 503, 10.1016/j.exer.2003.07.003 Boote, 2005, Lamellar orientation in human cornea in relation to mechanical properties, J Struct Biol, 149, 1, 10.1016/j.jsb.2004.08.009 Ottani, 2001, Collagen structure and functional implications, Micron, 32, 251, 10.1016/S0968-4328(00)00042-1 Stamov, 2013, Quantitative analysis of type I collagen fibril regulation by lumican and decorin using AFM, J Struct Biol, 183, 394, 10.1016/j.jsb.2013.05.022 Ihanamäki, 2004, Collagens and collagen-related matrix components in the human and mouse eye, Prog Retin Eye Res, 23, 403, 10.1016/j.preteyeres.2004.04.002 Robert, 2001, Corneal collagens, Pathol Biol (Paris), 49, 353, 10.1016/S0369-8114(01)00144-4 Hanlon, 2015, Corneal stroma microfibrils, Exp Eye Res, 132, 198, 10.1016/j.exer.2015.01.014 Fullwood, 2004, Collagen fibril orientation and corneal curvature, Structure, 12, 169, 10.1016/j.str.2004.01.019 Olsen, 1998, Human sclera: thickness and surface area, Am J Ophthalmol, 125, 237, 10.1016/S0002-9394(99)80096-8 Boote, 2011, Quantification of collagen organization in the peripheral human cornea at micron-scale resolution, Biophys J, 101, 33, 10.1016/j.bpj.2011.05.029 Newton, 1998, The integration of the corneal and limbal fibrils in the human eye, Biophys J, 75, 2508, 10.1016/S0006-3495(98)77695-7 Aghamohammadzadeh, 2004, X-ray scattering used to map the preferred collagen orientation in the human cornea and limbus, Structure, 12, 249, 10.1016/j.str.2004.01.002 Stewart, 2015, Human conjunctival stem cells are predominantly located in the medial canthal and inferior forniceal areas, Invest Ophthalmol Vis Sci, 56, 2021, 10.1167/iovs.14-16266 Keeley, 1984, Characterization of collagen from normal human sclera, Exp Eye Res, 39, 533, 10.1016/0014-4835(84)90053-8 Meek, 2001, Corneal and scleral collagens—a microscopist's perspective, Micron, 32, 261, 10.1016/S0968-4328(00)00041-X Fullwood, 2011, Imaging sclera with hard X-ray microscopy, Micron, 42, 506, 10.1016/j.micron.2011.01.012 Olsen, 1998, Human sclera: thickness and surface area, Am J Ophthalmol, 125, 237, 10.1016/S0002-9394(99)80096-8 Watson, 2004, Scleral structure, organisation and disease. A review, Exp Eye Res., 78, 609, 10.1016/S0014-4835(03)00212-4 Spaide, 2014, The choroid and vision loss, Am J Ophthalmol, 158, 649, 10.1016/j.ajo.2014.07.001 Alm, 1970, Blood flow and oxygen extraction in the cat uvea at normal and high intraocular pressures, Acta Physiol Scand, 80, 19, 10.1111/j.1748-1716.1970.tb04765.x Braun, 1995, Oxygen consumption in the inner and outer retina of the cat, Invest Ophthalmol Vis Sci, 36, 542 Adhi, 2013, Analysis of morphological features and vascular layers of choroid in diabetic retinopathy using spectral-domain optical coherence tomography, JAMA Ophthalmol, 131, 1267, 10.1001/jamaophthalmol.2013.4321 Nickla, 2010, The multifunctional choroid, Prog Retin Eye Res, 29, 144, 10.1016/j.preteyeres.2009.12.002 Kur, 2012, Cellular and physiological mechanisms underlying blood flow regulation in the retina and choroid in health and disease, Prog Retin Eye Res, 31, 377, 10.1016/j.preteyeres.2012.04.004 Harper, 2014, Bringing accommodation into focus: the several discoveries of the ciliary muscle, JAMA Ophthalmol, 132, 645, 10.1001/jamaophthalmol.2013.5525 Mathur, 2014, Influences of luminance and accommodation stimuli on pupil size and pupil center location, Invest Ophthalmol Vis Sci, 55, 2166, 10.1167/iovs.13-13492 Lara, 2014, Changes in the objective amplitude of accommodation with pupil size, Optom Vis Sci, 91, 1215, 10.1097/OPX.0000000000000383 Martínez-Morales, 2004, Eye development: a view from the retina pigmented epithelium, Bioessays, 26, 766, 10.1002/bies.20064 Sanes, 2015, The types of retinal ganglion cells: current status and implications for neuronal classification, Annu Rev Neurosci, 10.1146/annurev-neuro-071714-034120 Birch, 2011, Rod sensitivity, cone sensitivity, and photoreceptor layer thickness in retinal degenerative diseases, Invest Ophthalmol Vis Sci, 52, 7141, 10.1167/iovs.11-7509 Yanni, 2013, Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children, Am J Ophthalmol, 155, 354, 10.1016/j.ajo.2012.08.010 Gupta, 2014, Retinal imaging in uveitis, Saudi J Ophthalmol, 28, 95, 10.1016/j.sjopt.2014.02.008 Hsieh, 2013, Fundus image diagnostic agreement in uveitis utilizing free and open source software, Can J Ophthalmol, 48, 227, 10.1016/j.jcjo.2013.02.010 Ossewaarde-van Norel, 2012, Discrepancies between fluorescein angiography and optical coherence tomography in macular edema in uveitis, Am J Ophthalmol, 154, 233, 10.1016/j.ajo.2012.02.003 De Laey, 1995, Fluorescein angiography in posterior uveitis, Int Ophthalmol Clin, 35, 33, 10.1097/00004397-199503530-00005 Greco, 2013, Vogt–Koyanagi–Harada syndrome, Autoimmun Rev, 12, 1033, 10.1016/j.autrev.2013.01.004 Fardeau, 2007, Retinal fluorescein and indocyanine green angiography and optical coherence tomography in successive stages of Vogt–Koyanagi–Harada disease, Int Ophthalmol, 27, 163, 10.1007/s10792-006-9024-7 Arellanes-García, 2007, Fluorescein fundus angiographic findings in Vogt–Koyanagi–Harada syndrome, Int Ophthalmol, 27, 155, 10.1007/s10792-006-9027-4 Sharp, 1984, Sympathetic ophthalmia. Histopathologic and fluorescein angiographic correlation, Arch Ophthalmol, 102, 232, 10.1001/archopht.1984.01040030182022 Altan-Yaycioglu, 2006, Inflammation of the posterior uvea: findings on fundus fluorescein and indocyanine green angiography, Ocul Immunol Inflamm, 14, 171, 10.1080/09273940600660524 Flynn, 2014, Fundus autofluorescence and photoreceptor cell rosettes in mouse models, Invest Ophthalmol Vis Sci, 55, 5643, 10.1167/iovs.14-14136 Brandstetter, 2015, Light induces NLRP3 inflammasome activation in retinal pigment epithelial cells via lipofuscin-mediated photooxidative damage, J Mol Med (Berl), 93, 905, 10.1007/s00109-015-1275-1 Gupta, 2012, Fundus autofluorescence in serpiginouslike choroiditis, Retina, 32, 814, 10.1097/IAE.0b013e3182278c41 Vasconcelos-Santos, 2010, Retinal pigment epithelial changes in chronic Vogt–Koyanagi–Harada disease: fundus autofluorescence and spectral domain-optical coherence tomography findings, Retina, 30, 33, 10.1097/IAE.0b013e3181c5970d Heussen, 2011, Ultra-wide-field green-light (532nm) autofluorescence imaging in chronic Vogt–Koyanagi–Harada disease, Ophthalmic Surg Lasers Imaging, 42, 272, 10.3928/15428877-20110505-01 Koizumi, 2010, Blue light and near-infrared fundus autofluorescence in acute Vogt–Koyanagi–Harada disease, Br J Ophthalmol, 94, 1499, 10.1136/bjo.2009.164665 Seidensticker, 2011, Wide-field fundus autofluorescence corresponds to visual fields in chorioretinitis patients, Clin Ophthalmol, 5, 1667 An, 2011, High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second, Biomed Opt Express, 2, 2770, 10.1364/BOE.2.002770 Wilde, 2015, The diagnostic accuracy of spectral-domain optical coherence tomography for neovascular age-related macular degeneration: a comparison with fundus fluorescein angiography, Eye (Lond), 29, 602, 10.1038/eye.2015.44 Onal, 2014, Optical coherence tomography imaging in uveitis, Int Ophthalmol, 34, 401, 10.1007/s10792-013-9822-7 Antcliff, 2000, Comparison between optical coherence tomography and fundus fluorescein angiography for the detection of cystoid macular edema in patients with uveitis, Ophthalmology, 107, 593, 10.1016/S0161-6420(99)00087-1 Yazici, 2014, Criteria for Behçet's disease with reflections on all disease criteria, J Autoimmun, 48-49, 104, 10.1016/j.jaut.2014.01.014 Simmons-Rear, 2012, Characterization of serous retinal detachments in uveitis patients with optical coherence tomography, J Ophthalmic Inflamm Infect, 2, 191, 10.1007/s12348-012-0084-8 Gupta, 2011, Reversible retinal changes in the acute stage of sympathetic ophthalmia seen on spectral domain optical coherence tomography, Int Ophthalmol, 31, 105, 10.1007/s10792-011-9432-1 Gupta, 2009, Spectral-domain cirrus optical coherence tomography of choroidal striations seen in the acute stage of Vogt–Koyanagi–Harada disease, Am J Ophthalmol, 147, 148, 10.1016/j.ajo.2008.07.028 Doro, 2006, Combined 50- and 20-MHz frequency ultrasound imaging in intermediate uveitis, Am J Ophthalmol, 141, 953, 10.1016/j.ajo.2005.11.048 Rochels, 1980, Echography in posterior scleritis (author's transl), Klin Monbl Augenheilkd, 177, 611, 10.1055/s-2008-1057695 Chipczyńska, 2005, Scleritis posterior in child—case report, Klin Oczna, 107, 137 Chi, 2015, A prospective, observational study on the application of ultra-wide-field angiography in the evaluation and management of patients with anterior uveitis, PLoS One, 10, e0122749, 10.1371/journal.pone.0122749 Chi, 2015, A prospective, observational study on the application of ultra-wide-field angiography in the evaluation andmanagement of patients with anterior uveitis, PLoS One, 10, e0122749, 10.1371/journal.pone.0122749 Tsui, 2009, Patterns of periphlebitis in intermediate uveitis using ultra wide field fluorescein angiography, Semin Ophthalmol, 24, 29, 10.1080/08820530802520186 Campbell, 2012, Wide-field retinal imaging in the management of noninfectious posterior uveitis, Am J Ophthalmol, 154, 908, 10.1016/j.ajo.2012.05.019 Mo, 2007, Impact of inflammation on ocular immune privilege, Chem Immunol Allergy, 92, 155, 10.1159/000099266 Kaines, 2009, The use of ultra wide field fluorescein angiography in evaluation and management of uveitis, Semin Ophthalmol, 24, 19, 10.1080/08820530802520095 Streilein, 1996, Ocular immune privilege and the Faustian dilemma. The Proctor lecture, Invest Ophthalmol Vis Sci, 37, 1940 Streilein, 2003, Ocular immune privilege: the eye takes a dim but practical view of immunity and inflammation, J Leukoc Biol, 74, 179, 10.1189/jlb.1102574 Caspi, 2006, Ocular autoimmunity: the price of privilege?, Immunol Rev, 213, 23, 10.1111/j.1600-065X.2006.00439.x Mochizuki, 2010, Regional immunity of the eye, Acta Ophthalmol, 88, 292, 10.1111/j.1755-3768.2009.01757.x Mochizuki, 2013, Immunological homeostasis of the eye, Prog Retin Eye Res, 33, 10, 10.1016/j.preteyeres.2012.10.002 Taylor, 2009, Ocular immune privilege, Eye (Lond), 23, 1885, 10.1038/eye.2008.382 Taylor, 2010, Ocular immune privilege in the year 2010: ocular immune privilege and uveitis, Ocul Immunol Inflamm, 18, 488, 10.3109/09273948.2010.525730 Sugita, 2009, T-cell suppression by programmed cell death 1 ligand 1 on retinal pigment epithelium during inflammatory conditions, Invest Ophthalmol Vis Sci, 50, 2862, 10.1167/iovs.08-2846 Sugita, 2008, Retinal pigment epithelium-derived CTLA-2 alpha induces TGF beta-producing T regulatory cells, J Immunol, 181, 7525, 10.4049/jimmunol.181.11.7525 Horie, 2009, Human iris pigment epithelium suppresses activation of bystander T cells via TGFbeta–TGFbeta receptor interaction, Exp Eye Res, 88, 1033, 10.1016/j.exer.2009.01.011 Knop, 2010, The lid margin is an underestimated structure for preservation of ocular surface health and development of dry eye disease, Dev Ophthalmol, 45, 108, 10.1159/000315024 Knop, 2000, Conjunctiva-associated lymphoid tissue in the human eye, Invest Ophthalmol Vis Sci, 41, 1270 Agnifili, 2014, In vivo confocal microscopy of conjunctiva-associated lymphoid tissue in healthy humans, Invest Ophthalmol Vis Sci, 55, 5254, 10.1167/iovs.14-14365 Knop, 2007, Anatomy and immunology of the ocular surface, Chem Immunol Allergy, 92, 36, 10.1159/000099252 Knop, 2001, Lacrimal drainage-associated lymphoid tissue (LDALT): a part of the human mucosal immune system, Invest Ophthalmol Vis Sci, 42, 566 Dua, 1994, Mucosa specific lymphocytes in the human conjunctiva, corneoscleral limbus and lacrimal gland, Curr Eye Res, 13, 87, 10.3109/02713689409042401 Knop, 2008, Local production of secretory IgA in the eye-associated lymphoid tissue (EALT) of the normal human ocular surface, Invest Ophthalmol Vis Sci, 49, 2322, 10.1167/iovs.07-0691 Mun, 2011, Modulation of epithelial immunity by mucosal fluid, Sci Rep, 1, 8, 10.1038/srep00008 Shi, 2013, Differential involvement of Th1 and Th17 in pathogenic autoimmune processes triggered by different TLR ligands, J Immunol, 191, 415, 10.4049/jimmunol.1201732 Dhaeze, 2015, Humoral autoimmunity: a failure of regulatory T cells?, Autoimmun Rev, 14, 735, 10.1016/j.autrev.2015.04.006 Garreis, 2010, Antimicrobial peptides as a major part of the innate immune defense at the ocular surface, Dev Ophthalmol, 45, 16, 10.1159/000315016 McNamara, 2003, Innate defense of the ocular surface, Eye Contact Lens, 29, S10, 10.1097/00140068-200301001-00004 Akpek, 2003, Immune defense at the ocular surface, Eye (Lond), 17, 949, 10.1038/sj.eye.6700617 Perez, 2013, The eye: a window to the soul of the immune system, J Autoimmun, 45, 7, 10.1016/j.jaut.2013.06.011 Miano, 2005, Insertion of tear proteins into a meibomian lipids film, Colloids Surf B Biointerfaces, 44, 49, 10.1016/j.colsurfb.2005.05.011 Maïssa, 2010, Tear film dynamics and lipid layer characteristics—effect of age and gender, Cont Lens Anterior Eye, 33, 176, 10.1016/j.clae.2010.02.003 Utine, 2011, Tear osmolarity measurements in dry eye related to primary Sjögren's syndrome, Curr Eye Res, 36, 683, 10.3109/02713683.2011.571357 Nowak, 2010, Dry eye syndrome—multispecialistic disease. Part one: pathogenesis, signs, classification, Wiad Lek, 63, 374 Duquenne, 2013, Current diagnosis tools for Sjögren's syndrome, Int J Clin Rheumatol, 8, 281, 10.2217/ijr.13.4 Vitali, 2002, Classification criteria for Sjögren's syndrome. Classification criteria for Sjögren's syndrome: a revised version of the European criteria proposed by the American–European Consensus Group, Ann Rheum Dis, 61, 554, 10.1136/ard.61.6.554 Szalai, 2012, Evaluation of tear osmolarity in non-Sjögren and Sjögren syndrome dry eye patients with the TearLab system, Cornea, 31, 867, 10.1097/ICO.0b013e3182532047 Fiore, 2011, Pemphigus vulgaris: bilateral plica semilunaris involvement, Cornea, 30, 357, 10.1097/ICO.0b013e3181eadba3 van Bijsterveld, 1969, Diagnostic tests in the sicca syndrome, Arch Ophthalmol, 82, 10, 10.1001/archopht.1969.00990020012003 Cornec, 2014, Sjögren's syndrome: where do we stand, and where shall we go?, J Autoimmun, 51, 109, 10.1016/j.jaut.2014.02.006 Whitcher, 2010, A simplified quantitative method for assessing keratoconjunctivitis sicca from the Sjögren's Syndrome International Registry, Am J Ophthalmol, 149, 405, 10.1016/j.ajo.2009.09.013 Knop, 2005, The role of eye-associated lymphoid tissue in corneal immune protection, J Anat, 206, 271, 10.1111/j.1469-7580.2005.00394.x Pleyer, 1996, Autoimmune diseases of the peripheral cornea. Immunopathology, clinical aspects and therapy, Klin Monbl Augenheilkd, 208, 73, 10.1055/s-2008-1035173 Hamrah, 2007, Corneal antigen-presenting cells, Chem Immunol Allergy, 92, 58, 10.1159/000099254 Perez, 2013, The eye: a window to the soul of the immune system, J Autoimmun, 45, 7, 10.1016/j.jaut.2013.06.011 Streilein, 1999, Immunoregulatory mechanisms of the eye, Prog Retin Eye Res, 18, 357, 10.1016/S1350-9462(98)00022-6 Masli, 2011, Ocular immune privilege sites, Methods Mol Biol, 677, 449, 10.1007/978-1-60761-869-0_28 McMenamin, 1997, The distribution of immune cells in the uveal tract of the normal eye, Eye (Lond), 11, 183, 10.1038/eye.1997.49 Forrester, 2009, Privilege revisited: an evaluation of the eye's defence mechanisms, Eye (Lond), 23, 756, 10.1038/eye.2008.259 Selmi, 2014, Diagnosis and classification of autoimmune uveitis, Autoimmun Rev, 13, 591, 10.1016/j.autrev.2014.01.006 Levitt, 2015, Ocular inflammation in the setting of concomitant systemic autoimmune conditions in an older male population, Cornea, 34, 762, 10.1097/ICO.0000000000000437 Pan, 2014, Noninfectious immune-mediated uveitis and ocular inflammation, Curr Allergy Asthma Rep, 14, 409, 10.1007/s11882-013-0409-1 Agarwal, 2012, Rodent models of experimental autoimmune uveitis, Methods Mol Biol, 900, 443, 10.1007/978-1-60761-720-4_22 Takeuchi, 2015, Immunogenetics of Behçet's disease: a comprehensive review, J Autoimmun, 64, 137, 10.1016/j.jaut.2015.08.013 Bansal, 2015, Experimental autoimmune uveitis and other animal models of uveitis: an update, Indian J Ophthalmol, 63, 211, 10.4103/0301-4738.156914 DeVoss, 2006, Spontaneous autoimmunity prevented by thymic expression of a single self-antigen, J Exp Med, 203, 2727, 10.1084/jem.20061864 Greenwood, 1994, The blood–retinal barrier in experimental autoimmune uveoretinitis. Leukocyte interactions and functional damage, Lab Invest, 70, 39 Xu, 2003, Leukocyte trafficking in experimental autoimmune uveitis: breakdown of blood–retinal barrier and upregulation of cellular adhesion molecules, Invest Ophthalmol Vis Sci, 44, 226, 10.1167/iovs.01-1202 Sonoda, 2005, The immunoregulatory role of local antigen-presenting cells in ocular inflammation, Nihon Ganka Gakkai Zasshi, 109, 700 Takase, 2002, The presence of macrophage migration inhibitory factor in human trabecular meshwork and its upregulatory effects on the T helper 1 cytokine, Invest Ophthalmol Vis Sci, 43, 2691 McPherson, 2014, Retinal antigen-specific regulatory T cells protect against spontaneous and induced autoimmunity and require local dendritic cells, J Neuroinflammation, 11, 205, 10.1186/s12974-014-0205-4 Ransohoff, 2012, The anatomical and cellular basis of immune surveillance in the central nervous system, Nat Rev Immunol, 12, 623, 10.1038/nri3265 Lu, 2014, Unmet needs in autoimmunity and potential new tools, Clin Rev Allergy Immunol, 47, 111, 10.1007/s12016-014-8414-2 Perl, 2012, Pathogenesis and spectrum of autoimmunity, Methods Mol Biol, 900, 1, 10.1007/978-1-60761-720-4_1 Perl, 2004, Pathogenesis and spectrum of autoimmunity, Methods Mol Med, 102, 1 Koboziev, 2015, Use of humanized mice to study the pathogenesis of autoimmune and inflammatory diseases, Inflamm Bowel Dis, 21, 1652, 10.1097/MIB.0000000000000446 Gasparin, 2012, Experimental models of autoimmune inflammatory ocular diseases, Arq Bras Oftalmol, 75, 143, 10.1590/S0004-27492012000200016 Deeg, 2007, Major retinal autoantigens remain stably expressed during all stages of spontaneous uveitis, Mol Immunol, 44, 3291, 10.1016/j.molimm.2007.02.027 Caspi, 2003, Experimental autoimmune uveoretinitis in the rat and mouse, Curr Protoc Immunol, 10.1002/0471142735.im1506s53 Silver, 2015, Retina-specific T regulatory cells bring about resolution and maintain remission of autoimmune uveitis, J Immunol, 194, 3011, 10.4049/jimmunol.1402650 Horai, 2013, Breakdown of immune privilege and spontaneous autoimmunity in mice expressing a transgenic T cell receptor specific for a retinal autoantigen, J Autoimmun, 44, 21, 10.1016/j.jaut.2013.06.003 Gregerson, 2007, Interaction of retinal pigmented epithelial cells and CD4 T cells leads to T-cell anergy, Invest Ophthalmol Vis Sci, 48, 4654, 10.1167/iovs.07-0286 Streilein, 2002, Ocular immune privilege and the impact of intraocular inflammation, DNA Cell Biol, 21, 453, 10.1089/10445490260099746 Noel, 2013, Small vessel involvement in Takayasu's arteritis, Autoimmun Rev, 12, 355, 10.1016/j.autrev.2012.05.010 Braithwaite, 2014, Diagnostic features of the autoimmune retinopathies, Autoimmun Rev, 13, 534, 10.1016/j.autrev.2014.01.039 Petzold, 2014, Diagnosis and classification of autoimmune optic neuropathy, Autoimmun Rev, 13, 539, 10.1016/j.autrev.2014.01.009 Kaushik, 2013, Inner nuclear layer thickening is inversely proportional to retinal ganglion cell loss in optic neuritis, PLoS One, 8, e78341, 10.1371/journal.pone.0078341 Petzold, 2010, Neuromyelitis optica-IgG (aquaporin-4) autoantibodies in immune mediated optic neuritis, J Neurol Neurosurg Psychiatry, 81, 109, 10.1136/jnnp.2008.146894 Pereira, 2015, Epidemiological, clinical, and immunological characteristics of neuromyelitis optica: a review, J Neurol Sci, 355, 7, 10.1016/j.jns.2015.05.034 Balk, 2015, Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis, J Neurol Neurosurg Psychiatry, 86, 419, 10.1136/jnnp-2014-308189 Petzold, 2014, Chronic relapsing inflammatory optic neuropathy: a systematic review of 122 cases reported, J Neurol, 261, 17, 10.1007/s00415-013-6957-4 Polman, 2005, Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”, Ann Neurol, 58, 840, 10.1002/ana.20703 Saiz, 2007, Revised diagnostic criteria for neuromyelitis optica (NMO). Application in a series of suspected patients, J Neurol, 254, 1233, 10.1007/s00415-007-0509-8