The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS

Springer Science and Business Media LLC - Tập 135 - Trang 363-385 - 2018
Roy O. Weller1, Matthew M. Sharp1, Myron Christodoulides2, Roxana O. Carare1, Kjeld Møllgård3
1Clinical Neurosciences, South Academic Block, Level D, LD66, MP806, Faculty of Medicine University of Southampton, Southampton General Hospital, Southampton, UK
2Neisseria Research Laboratory, Molecular Microbiology, MP814, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton Faculty of Medicine, Southampton General Hospital, Southampton, UK
3Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark

Tóm tắt

Meninges that surround the CNS consist of an outer fibrous sheet of dura mater (pachymeninx) that is also the inner periosteum of the skull. Underlying the dura are the arachnoid and pia mater (leptomeninges) that form the boundaries of the subarachnoid space. In this review we (1) examine the development of leptomeninges and their role as barriers and facilitators in the foetal CNS. There are two separate CSF systems during early foetal life, inner CSF in the ventricles and outer CSF in the subarachnoid space. As the foramina of Magendi and Luschka develop, one continuous CSF system evolves. Due to the lack of arachnoid granulations during foetal life, it is most likely that CSF is eliminated by lymphatic drainage pathways passing through the cribriform plate and nasal submucosa. (2) We then review the fine structure of the adult human and rodent leptomeninges to establish their roles as barriers and facilitators for the movement of fluid, cells and pathogens. Leptomeningeal cells line CSF spaces, including arachnoid granulations and lymphatic drainage pathways, and separate elements of extracellular matrix from the CSF. The leptomeningeal lining facilitates the traffic of inflammatory cells within CSF but also allows attachment of bacteria such as Neisseria meningitidis and of tumour cells as CSF metastases. Single layers of leptomeningeal cells extend into the brain closely associated with the walls of arteries so that there are no perivascular spaces around arteries in the cerebral cortex. Perivascular spaces surrounding arteries in the white matter and basal ganglia relate to their two encompassing layers of leptomeninges. (3) Finally we examine the roles of ligands expressed by leptomeningeal cells for the attachment of inflammatory cells, bacteria and tumour cells as understanding these roles may aid the design of therapeutic strategies to manage developmental, autoimmune, infectious and neoplastic diseases relating to the CSF, the leptomeninges and the associated CNS.

Tài liệu tham khảo

Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25 Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG (2018) The role of brain barriers in fluid movement in the CNS—is there a “glymphatic” system? Acta Neuropathol (in press) Alcolado JC, Moore IE, Weller RO (1986) Calcification in the human choroid plexus, meningiomas and pineal gland. Neuropathol Appl Neurobiol 12:235–250 Alcolado R, Weller RO, Parrish EP, Garrod D (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17 Alkuwaity K, Taylor A, Heckels JE, Doran KS, Christodoulides M (2012) Group B Streptococcus interactions with human meningeal cells and astrocytes in vitro. PLoS ONE 7:e42660. https://doi.org/10.1371/journal.pone.0042660 Angelov DN, Vasilev VA (1989) Morphogenesis of rat cranial meninges. A light- and electron-microscopic study. Cell Tissue Res 257:207–216 Arbel-Ornath M, Hudry E, Eikermann-Haerter K, Hou S, Gregory JL, Zhao L, Betensky RA, Frosch MP, Greenberg SM, Bacskai BJ (2013) Interstitial fluid drainage is impaired in ischemic stroke and Alzheimer’s disease mouse models. Acta Neuropatholol 126:353–364. https://doi.org/10.1007/s00401-013-1145-2 Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, Wiig H, Alitalo K (2015) A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med 212:991–999. https://doi.org/10.1084/jem.20142290 Auger JP, Christodoulides M, Segura M, Xu J, Gottschalk M (2015) Interactions of Streptococcus suis serotype 2 with human meningeal cells and astrocytes. BMC Res Notes 8:607 Balslev Y, Saunders NR, Møllgård K (1997) Ontogenetic development of diffusional restriction to protein at the pial surface of the rat brain: an electron microscopical study. J Neurocytol 26:133–148 Bhogal P, Makalanda HL, Brouwer PA, Gontu V, Rodesch G, Mercier P, Soderman M (2015) Normal pio-dural arterial connections. Interv Neuroradiol 21:750–758. https://doi.org/10.1177/1591019915609137 Brandtzaeg P, van Deuren M (2012) Classification and pathogenesis of meningococcal infections. In: Christodoulides M (ed) Neisseria meningitidis: advanced methods and protocols. Methods in molecular biology, vol 799. Humana, New York, pp 21–35 Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40:648–677 Brøchner CB, Holst CB, Møllgård K (2015) Outer brain barriers in rat and human development. Front Neurosci 9:75 Brocklehurst G (1969) The development of the human cerebrospinal fluid pathway with particular reference to the roof of the fourth ventricle. J Anat 105:467–475 Carare RO (2017) Editorial: clearance pathways for amyloid-beta. Significance for Alzheimer’s disease and its therapy. Front Aging Neurosci 9:339. https://doi.org/10.3389/fnagi.2017.00339 Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JA, Perry VH, Weller RO (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries: significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34:131–144. https://doi.org/10.1111/j.1365-2990.2007.00926.x Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO (2013) Review: cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 39:593–611. https://doi.org/10.1111/nan.12042 Charidimou A, Hong YT, Jager HR, Fox Z, Aigbirhio FI, Fryer TD, Menon DK, Warburton EA, Werring DJ, Baron JC (2015) White matter perivascular spaces on magnetic resonance imaging: marker of cerebrovascular amyloid burden? Stroke J Cereb Circul 46:1707–1709. https://doi.org/10.1161/STROKEAHA.115.009090 Christodoulides M (2013) A history of bacterial meningitis from antiquity to modern times. In: Christodoulides M (ed) Meningitis: cellular and molecular basis. Advances in molecular and cellular microbiology, vol 26. CABI, Wallingford, pp 1–16 Christodoulides M (2013) Inflammation in the subarachnoid space. In: Christodoulides M (ed) Meningitis: cellular and molecular basis. CABI, Wallingford Clancy B, Darlington RB, Finlay BL (2001) Translating developmental time across mammalian species. Neuroscience 105:7–17 Coles JA, Stewart-Hutchinson PJ, Myburgh E, Brewer JM (2017) The mouse cortical meninges are the site of immune responses to many different pathogens, and are accessible to intravital imaging. Methods 127:53–61. https://doi.org/10.1016/j.ymeth.2017.03.020 Coureuil M, Lecuyer H, Bourdoulous S, Nassif X (2017) A journey into the brain: insight into how bacterial pathogens cross blood–brain barriers. Nat Rev Microbiol 15:149–159 Criss AK, Seifert HS (2012) A bacterial siren song: intimate interactions between Neisseria and neutrophils. Nat Rev Microbiol 10:178–190 Criswell TP, Sharp MM, Dobson H, Finucane C, Weller RO, Verma A, Carare RO (2017) The structure of the perivascular compartment in the old canine brain: a case study. Clin Sci (Lond) 131:2737–2744. https://doi.org/10.1042/CS20171278 Decimo I, Fumagalli G, Berton V, Krampera M, Bifari F (2012) Meninges: from protective membrane to stem cell niche. Am J Stem Cells 1:92–105 Djukic M, Trimmel R, Nagel I, Spreer A, Lange P, Stadelmann C, Nau R (2017) Cerebrospinal fluid abnormalities in meningeosis neoplastica: a retrospective 12-year analysis. Fluids Barriers CNS 14:7 Edwards VL, Wang LC, Dawson V, Stein DC, Song W (2013) Neisseria gonorrhoeae breaches the apical junction of polarized epithelial cells for transmigration by activating EGFR. Cell Microbiol 15:1042–1057 Engelhardt B, Carare RO, Bechmann I, Flugel A, Laman JD, Weller RO (2016) Vascular, glial, and lymphatic immune gateways of the central nervous system. Acta Neuropathol 132:317–338. https://doi.org/10.1007/s00401-016-1606-5 Engelhardt B, Vajkoczy P, Weller RO (2017) The movers and shapers in immune privilege of the CNS. Nat Immunol 18:123–131. https://doi.org/10.1038/ni.3666 Feurer DJ, Weller RO (1991) Barrier functions of the leptomeninges: a study of normal meninges and meningiomas in tissue culture. Neuropathol Appl Neurobiol 17:391–405 Fiorilli P, Partridge D, Staniszewska I, Wang JY, Grabacka M, So K, Marcinkiewicz C, Reiss K, Khalili K, Croul SE (2008) Integrins mediate adhesion of medulloblastoma cells to tenascin and activate pathways associated with survival and proliferation. Lab Invest 88:1143–1156 Fowler MI, Weller RO, Heckels JE, Christodoulides M (2004) Different meningitis-causing bacteria induce distinct inflammatory responses on interaction with cells of the human meninges. Cell Microbiol 6:555–567. https://doi.org/10.1111/j.1462-5822.2004.00382.x Giuntini S, Pajon R, Ram S, Granoff DM (2015) Binding of complement factor H to PorB3 and NspA enhances resistance of Neisseria meningitidis to anti-factor H binding protein bactericidal activity. Infect Immun 83:1536–1545 Gomez DG, DiBenedetto AT, Pavese AM, Firpo A, Hershan DB, Potts DG (1982) Development of arachnoid villi and granulations in man. Acta Anat (Basel) 111:247–258 Graeber MB, Streit WJ, Kiefer R, Schoen SW, Kreutzberg GW (1990) New expression of myelomonocytic antigens by microglia and perivascular cells following lethal motor neuron injury. J Neuroimmunol 27:121–132 Hansen TP, Cain J, Thomas O, Jackson A (2015) Dilated perivascular spaces in the Basal Ganglia are a biomarker of small-vessel disease in a very elderly population with dementia. Am J Neuroradiol 36:893–898 Hardy SJ, Christodoulides M, Weller RO, Heckels JE (2000) Interactions of Neisseria meningitidis with cells of the human meninges. Mol Microbiol 36:817–829 Hawkes CA, Hartig W, Kacza J, Schliebs R, Weller RO, Nicoll JA, Carare RO (2011) Perivascular drainage of solutes is impaired in the ageing mouse brain and in the presence of cerebral amyloid angiopathy. Acta Neuropathol 121:431–443. https://doi.org/10.1007/s00401-011-0801-7 Helaine S, Carbonnelle E, Prouvensier L, Beretti JL, Nassif X, Pelicic V (2005) PilX, a pilus-associated protein essential for bacterial aggregation, is a key to pilus-facilitated attachment of Neisseria meningitidis to human cells. Mol Microbiol 55:65–77 Hill DJ, Griffiths NJ, Borodina E, Virji M (2010) Cellular and molecular biology of Neisseria meningitidis colonization and invasive disease. Clin Sci (London, England: 1979) 118:547–564. https://doi.org/10.1042/cs20090513 Humphries HE, Triantafilou M, Makepeace BL, Heckels JE, Triantafilou K, Christodoulides M (2005) Activation of human meningeal cells is modulated by lipopolysaccharide (LPS) and non-LPS components of Neisseria meningitidis and is independent of Toll-like receptor (TLR)4 and TLR2 signalling. Cell Microbiol 7:415–430 Hung MC, Heckels JE, Christodoulides M (2013) The adhesin complex protein (ACP) of Neisseria meningitidis is a new adhesin with vaccine potential. MBio. https://doi.org/10.1128/mBio.00041-13 Hutchings M, Weller RO (1986) Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 65:316–325. https://doi.org/10.3171/jns.1986.65.3.0316 Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4:147ra111. https://doi.org/10.1126/scitranslmed.3003748 Jarva H, Ram S, Vogel U, Blom AM, Meri S (2005) Binding of the complement inhibitor C4 bp to serogroup B Neisseria meningitidis. J Immunol 174:6299–6307 Jen FE, Warren MJ, Schulz BL, Power PM, Swords WE, Weiser JN, Apicella MA, Edwards JL, Jennings MP (2013) Dual pili post-translational modifications synergize to mediate meningococcal adherence to platelet activating factor receptor on human airway cells. PLoS Pathog 9:e1003377. https://doi.org/10.1371/journal.ppat.1003377 Johansson PA, Dziegielewska KM, Liddelow SA, Saunders NR (2008) The blood–CSF barrier explained: when development is not immaturity. BioEssays News Rev Mol Cell Dev Biol 30:237–248. https://doi.org/10.1002/bies.20718 Kadhim HJ, Gadisseux JF, Evrard P (1998) Topographical and cytological evolution of the glial phase during prenatal development of the human brain: histochemical and electron microscopic study. J Neuropathol Exp Neurol 47:166–188 Kallstrom H, Liszewski MK, Atkinson JP, Jonsson AB (1997) Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Mol Microbiol 25:639–647 Keable A, Fenna K, Yuen HM, Johnston DA, Smyth NR, Smith C, Al-Shahi Salman R, Samarasekera N, Nicoll JA, Attems J, Kalaria RN, Weller RO, Carare RO (2016) Deposition of amyloid beta in the walls of human leptomeningeal arteries in relation to perivascular drainage pathways in cerebral amyloid angiopathy. Biochem Biophys Acta 1862:1037–1046. https://doi.org/10.1016/j.bbadis.2015.08.024 Khairalla AS, Omer SA, Mahdavi J, Aslam A, Dufailu OA, Self T, Jonsson AB, Georg M, Sjolinder H, Royer PJ, Martinez-Pomares L, Ghaemmaghami AM, Wooldridge KG, Oldfield NJ, Ala’Aldeen DA (2015) Nuclear trafficking, histone cleavage and induction of apoptosis by the meningococcal App and MspA autotransporters. Cell Microbiol 17:1008–1020 Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480–488 Kida S, Weller RO (1993) Morphological basis for fluid transport through and around ependymal, arachnoidal and glial cells. In: Raimondi AJ (ed) Intracranial cyst lesions. Springer, New York, pp 37–52 Kida S, Yamashima T, Kubota T, Ito H, Yamamoto S (1988) A light and electron microscopic and immunohistochemical study of human arachnoid villi. J Neurosurg 69:429–435 Krahn V (1981) Leukodiapedesis and leukocyte migration in the leptomeninges and in the subarachnoid space. J Neurol 226:43–52 Lappann M, Danhof S, Guenther F, Olivares-Florez S, Mordhorst IL, Vogel U (2013) In vitro resistance mechanisms of Neisseria meningitidis against neutrophil extracellular traps. Mol Microbiol 89:433–449 Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, Harris TH, Kipnis J (2015) Structural and functional features of central nervous system lymphatic vessels. Nature 523:337–341. https://doi.org/10.1038/nature14432 Mandrell RE, Griffiss JM, Macher BA (1988) Lipooligosaccharides (LOS) of Neisseria gonorrhoeae and Neisseria meningitidis have components that are immunochemically similar to precursors of human blood group antigens. Carbohydratesequence specificity of the mouse monoclonal antibodies that recognize crossreacting antigens on LOS andhuman erythrocytes. J Exp Med 168(1):107–126 Mollanji R, Papaiconomou C, Boulton M, Midha R, Johnston M (2001) Comparison of cerebrospinal fluid transport in fetal and adult sheep. Am J Physiol Regul Integr Comp Physiol 281:R1215–R1223. https://doi.org/10.1152/ajpregu.2001.281.4.R1215 Møllgård K, Dziegielewska KM, Holst CB, Habgood MD, Saunders NR (2017) Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development. Sci Rep 7:11603. https://doi.org/10.1038/s41598-017-11596-0 Morita K, Sasaki H, Fujimoto K, Furuse M, Tsukita S (1999) Claudin-11/OSP-based tight junctions of myelin sheaths in brain and Sertoli cells in testis. J Cell Biol 145:579–588 Morris AW, Sharp MM, Albargothy NJ, Fernandes R, Hawkes CA, Verma A, Weller RO, Carare RO (2016) Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol 131:725–736. https://doi.org/10.1007/s00401-016-1555-z Nabeshima S, Reese TS, Landis DM, Brightman MW (1975) Junctions in the meninges and marginal glia. J Comp Neurol 164:127–169 Nagele V, Heesemann J, Schielke S, Jimenez-Soto LF, Kurzai O, Ackermann N (2011) Neisseria meningitidis adhesin NadA targets beta1 integrins: functional similarity to Yersinia invasin. J Biol Chem 286:20536–20546 Neumann JE, Swartling FJ, Schuller U (2017) Medulloblastoma: experimental models and reality. Acta Neuropathol 134:679–689. https://doi.org/10.1007/s00401-017-1753-3 Nicholas DS, Weller RO (1988) The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J Neurosurg 69:276–282. https://doi.org/10.3171/jns.1988.69.2.0276 Northcott PA, Buchhalter I, Morrissy AS et al (2017) The whole-genome landscape of medulloblastoma subtypes. Nature 547:311–317 O’Rahilly R, Muller F (1986) The meninges in human development. J Neuropathol Exp Neurolol 45:588–608 O’Rahilly R, Muller F (2010) Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs 192:73–84 Oldfield NJ, Bland SJ, Taraktsoglou M, Dos Ramos FJ, Robinson K, Wooldridge KG, Ala’Aldeen DA (2007) T-cell stimulating protein A (TspA) of Neisseria meningitidis is required for optimal adhesion to human cells. Cell Microbiol 9:463–478 Orihuela CJ, Mahdavi J, Thornton J, Mann B, Wooldridge KG, Abouseada N, Oldfield NJ, Self T, Ala’Aldeen DA, Tuomanen EI (2009) Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J Clin Invest 119:1638–1646 Pluddemann A, Mukhopadhyay S, Sankala M, Savino S, Pizza M, Rappuoli R, Tryggvason K, Gordon S (2009) SR-A, MARCO and TLRs differentially recognise selected surface proteins from Neisseria meningitidis: an example of fine specificity in microbial ligand recognition by innate immune receptors. J Innate Immun 1:153–163 Pollock H, Hutchings M, Weller RO, Zhang ET (1997) Perivascular spaces in the basal ganglia of the human brain: their relationship to lacunes. J Anat 191(Pt 3):337–346 Pron B, Taha MK, Rambaud C, Fournet JC, Pattey N, Monnet JP, Musilek M, Beretti JL, Nassif X (1997) Interaction of Neisseria meningitidis with the components of the blood–brain barrier correlates with an increased expression of PilC. J Infect Dis 176:1285–1292 Ramaswamy V, Taylor MD (2017) Medulloblastoma: from myth to molecular. J Clin Oncol 35:2355–2363 Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F (2009) C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 10:514–523. https://doi.org/10.1038/ni.1716 Roher AE, Kuo YM, Esh C, Knebel C, Weiss N, Kalback W, Luehrs DC, Childress JL, Beach TG, Weller RO, Kokjohn TA (2003) Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer’s disease. Mol Med 9:112–122 Salzman KL, Osborn AG, House P, Jinkins JR, Ditchfield A, Cooper JA, Weller RO (2005) Giant tumefactive perivascular spaces. AJNR 26:298–305 Sapsford I, Buontempo J, Weller RO (1983) Basement membrane surfaces and perivascular compartments in normal human brain and glial tumours. A scanning electron microscope study. Neuropathol Appl Neurobiol 9:181–194 Sato K, Shimizu K, Fujimura M, Inoue T, Matsumoto Y, Tominaga T (2011) Compromise of brain tissue caused by cortical venous reflux of intracranial dural arteriovenous fistulas assessment with diffusion-weighted magnetic resonance imaging. Stroke J Cereb Circ 42:998–1003 Saunders NR, Habgood MD, Møllgård K, Dziegielewska KM (2016) The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system. F1000Res. https://doi.org/10.12688/f1000research.7378.1 Scarselli M, Serruto D, Montanari P, Capecchi B, Adu-Bobie J, Veggi D, Rappuoli R, Pizza M, Arico B (2006) Neisseria meningitidis NhhA is a multifunctional trimeric autotransporter adhesin. Mol Microbiol 61:631–644 Schlager C, Korner H, Krueger M, Vidoli S, Haberl M, Mielke D, Brylla E, Issekutz T, Cabanas C, Nelson PJ, Ziemssen T, Rohde V, Bechmann I, Lodygin D, Odoardi F, Flugel A (2016) Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530:349–353. https://doi.org/10.1038/nature16939 Schmechel DE, Rakic P (1979) A Golgi study of radial glial cells in developing monkey telencephalon: morphogenesis and transformation into astrocytes. Anat Embryol (Berl) 156:115–152 Schubert-Unkmeir A, Konrad C, Slanina H, Czapek F, Hebling S, Frosch M (2010) Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin: a role for MMP-8. PLoS Pathog 6:e1000874. https://doi.org/10.1371/journal.ppat.1000874 Seib KL, Scarselli M, Comanducci M, Toneatto D, Masignani V (2015) Neisseria meningitidis factor H-binding protein fHbp: a key virulence factor and vaccine antigen. Expert Rev Vaccines 14:841–859 Siegenthaler JA, Pleasure SJ (2011) We have got you ‘covered’: how the meninges control brain development. Curr Opin Genet Dev 21:249–255 Slanina H, Mundlein S, Hebling S, Schubert-Unkmeir A (2014) Role of epidermal growth factor receptor signaling in the interaction of Neisseria meningitidis with endothelial cells. Infect Immun 82:1243–1255 Smith AJ, Verkman AS (2017) The “glymphatic” mechanism for solute clearance in Alzheimer’s disease: game changer or unproven speculation? FASEB J. https://doi.org/10.1096/fj.201700999 Soderholm N, Vielfort K, Hultenby K, Aro H (2011) Pathogenic Neisseria hitchhike on the uropod of human neutrophils. PLoS One 6:e24353. https://doi.org/10.1371/journal.pone.0024353 Stolp HB, Liddelow SA, Sa-Pereira I, Dziegielewska KM, Saunders NR (2013) Immune responses at brain barriers and implications for brain development and neurological function in later life. Front Integr Neurosci 7:61. https://doi.org/10.3389/fnint.2013.00061 Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246:F835–F844 Toikka J, Aalto J, Hayrinen J, Pelliniemi LJ, Finne J (1998) The polysialic acid units of the neural cell adhesion molecule N-CAM form filament bundle networks. J Biol Chem 273:28557–28559 Toussi DN, Wetzler LM, Liu X, Massari P (2016) Neisseriae internalization by epithelial cells is enhanced by TLR2 stimulation. Microbes Infect Institut Pasteur 18:627–638. https://doi.org/10.1016/j.micinf.2016.06.001 Tripathi BJ, Tripathi RC (1974) Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J Physiol 239:195–206 Upton ML, Weller RO (1985) The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J Neurosurg 63:867–875. https://doi.org/10.3171/jns.1985.63.6.0867 Vacca I, Del Tordello E, Gasperini G, Pezzicoli A, Di Fede M, Rossi Paccani S, Marchi S, Mubaiwa TD, Hartley-Tassell LE, Jennings MP, Seib KL, Masignani V, Pizza M, Serruto D, Arico B, Delany I (2016) Neisserial heparin binding antigen (NHBA) contributes to the adhesion of Neisseria meningitidis to human epithelial cells. PLoS One 11:e0162878. https://doi.org/10.1371/journal.pone.0162878 Verney C, Monier A, Fallet-Bianco C, Gressens P (2010) Early microglial colonization of the human forebrain and possible involvement in periventricular white-matter injury of preterm infants. J Anat 217:436–448 Voigt T (1989) Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes. J Comp Neurol 289:74–88 Weller RO (1999) Reaction of intrathecal and epidural spaces to infection and inflammation. In: Yaksh TL (ed) Spinal drug delivery. Elsevier, Amsterdam, pp 297–315 Weller RO (2005) Microscopic morphology and histology of the human meninges. Morphologie 89:22–34 Weller RO, Hawkes CA, Kalaria RN, Werring DJ, Carare RO (2015) White matter changes in dementia: role of impaired drainage of interstitial fluid. Brain Pathol 25:63–78. https://doi.org/10.1111/bpa.12218 Whish S, Dziegielewska KM, Møllgård K, Noor NM, Liddelow SA, Habgood MD, Richardson SJ, Saunders NR (2015) The inner CSF–brain barrier: developmentally controlled access to the brain. Front Neurosci 9:16 Wisniewski HM, Wegiel J (1994) Beta-amyloid formation by myocytes of leptomeningeal vessels. Acta Neuropathol (Berl) 87:233–241 Wolburg H, Mack AF (2014) Comment on the topology of mammalian blood-cerebrospinal fluid barrier. Neurol Psych Brain Res 20:70–72 Yasuda K, Cline C, Vogel P, Onciu M, Fatima S, Sorrentino BP, Thirumaran RK, Ekins S, Urade Y, Fujimori K, Schuetz EG (2013) Drug transporters on arachnoid barrier cells contribute to the blood-cerebrospinal fluid barrier. Drug Metab Dispos 41:923–931 Zhang ET, Inman CB, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat 170:111–123