Robotics in Healthcare: A Survey

SN Computer Science - Tập 5 - Trang 1-19 - 2024
David Silvera-Tawil1
1Australian e-Health Research Centre, CSIRO, Sydney, Australia

Tóm tắt

Research and innovation in the area of robotics in healthcare has seen significant growth in recent years. Global trends indicate that patients are getting older and sicker, while demands in healthcare workers are increasing their chance of injury. Robotic technology has the potential to enable high levels of patient care, clinical productivity and safety for both patients and healthcare workers. This paper surveys the state-of-the-art in robotics in healthcare and well-being, with particular attention to the key barriers and enablers to the implementation of this technology in real-world settings. Desktop research was used to identify available and emerging robotic technology currently in use (or with potential use) in healthcare settings. Primary sources of information included: academic publications, international organisations, commercial websites and online news agencies. In this paper, applications of robots in healthcare were divided into five main areas: service, assistive, socially-assistive, teleoperated and interventional robots. The maturity and readiness of different products is still an open challenge, with service and interventional robots leading the way. Wide-spread adoption of robots is likely to happen as the cost of the technology reduces, and wide evidence of beneficial long-term impact is available. This manuscript identified the main drivers, challenges, opportunities and considerations for implementing robots in healthcare. We hope this manuscript will raise awareness about robotics in healthcare among a wider audience to maximise availability, quality, and acceptability this technology.

Tài liệu tham khảo

World Health Organization (WHO). Global spending on health: a world in transition 2019. Global Report. 2019. p. 49.

Kaiser MS, Mamun SA, Mahmud M, Tania MH. Healthcare robots to Combat COVID-19. Lecture notes on data engineering and communications technologies. 60th ed. Singapore: Springer; 2021. p. 14.

Müller C. International Federation of Robotics Press Conference; 2019.

Dickstein-Fischer LA, Crone-Todd DE, Chapman IM, Fathima AT, Fischer GS. Socially assistive robots: current status and future prospects for autism interventions. Innov Entrep Health. 2018;5:15–25. https://doi.org/10.2147/ieh.s138753.

Abdi J, Al-Hindawi A, Ng T, Vizcaychipi MP. Scoping review on the use of socially assistive robot technology in elderly care. BMJ Open. 2018;8: e018815. https://doi.org/10.1136/bmjopen-2017-018815.

Dolic Z, Castro R, Moarcas A. Robots in healthcare: a solution or a problem? European Parliament Policy Department for Economic, Scientific and Quality of Life Policies Directorate-General for Internal Policies. 2019.

Cresswell K, Cunningham-Burley S, Sheikh A. Health care robotics: qualitative exploration of key challenges and future directions. J Med Internet Res. 2018;20(7):1–11. https://doi.org/10.2196/10410.

Riek LD. Healthcare robotics. Commun ACM. 2017;60(11):68–78. https://doi.org/10.1145/3127874. arXiv:1704.03931.

Bekey G, Ambrose R, Kumar V, Sanderson A, Wilcox B, Zheng Y. International assessment of research and development in robotics. National Science Foundation; 2006. http://www.wtec.org/robotics/report/screen-robotics-final-report.pdf.

Hägele M, Nilsson K, Pires JN, Bischoff R. Industrial robotics. In: Siciliano B, Khatib O, editors. Springer handbook of robotics. Berlin: Springer International Publishing; 2016. p. 1385–422.

Guizzo E. World robot population reaches 8.6 million. https://spectrum.ieee.org/automaton/robotics/industrial-robots/world-robot-population-chart.

Keay S. A robotics roadmap for Australia 2018. Australian Centre for Robotic Vision; 2018.

World Population Ageing. United Nations: Department of Economic and Social Affairs; 2019.

Vos T. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet. 2015;386(9995):743–800. https://doi.org/10.1016/S0140-6736(15)60692-4.

Australian Institute of Health and Welfare. Australia’s health 2018; 2018. https://www.aihw.gov.au/reports/australias-health/australias-health-2018-in-brief/contents/how-healthy-are-we.

Health Workforce Australia. Australia’s future health workforce—Nurses detailed report. 2014. https://www.health.gov.au/resources/publications/nurses-australias-future-health-workforce-reports.

Lee JY, Song YA, Jung JY, Kim HJ, Kim BR, Do HK, et al. Nurses’ needs for care robots in integrated nursing care services. J Adv Nurs. 2018;74(9):2094–105. https://doi.org/10.1111/jan.13711.

Scheunemann LP, White DB. The ethics and reality of rationing in medicine. Chest. 2011;140(6):1625–32. https://doi.org/10.1378/chest.11-0622.

Keliddar I, Mosadeghrad AM, Jafari-Sirizi M. Rationing in health systems: a critical review. Med J Islam Repub Iran. 2017;31(1):271–277. https://doi.org/10.14196/MJIRI.31.47.

National Science Foundation. A roadmap for US robotics: from internet to robotics. National Science Foundation, University of California San Diego, Oregon State University, Georgia Institute of Technology; 2016.

Troccaz J, Dagnino G, Yang GZ. Frontiers of medical robotics: From concept to systems to clinical translation. Annu Rev Biomed Eng. 2019;21(1):193–218. https://doi.org/10.1146/annurev-bioeng-060418-052502.

Gerling GJ, Rigsbee S, Childress RM, Martin ML. The design and evaluation of a computerized and physical simulator for training clinical prostate exams. IEEE Trans Syst Man Cybern Part A Syst Hum. 2009;39(2):388–403. https://doi.org/10.1109/TSMCA.2008.2009769.

Huang Z, Lin C, Kanai-Pak M, Maeda J, Kitajima Y, Nakamura M, et al. Impact of using a robot patient for nursing skill training in patient transfer. IEEE Trans Learn Technol. 2017;10(3):355–66. https://doi.org/10.1109/TLT.2016.2599537.

Niemeyer G, Preusche C, Stramigioli S, Lee D. Telerobotics. In: Siciliano B, Khatib O, editors. Springer handbook of robotics. Berlin: Springer; 2016. p. 1085–108.

Australian Department of Health. National strategic framework for rural and remote health, rural health standing committee; 2016. https://www1.health.gov.au/internet/main/publishing.nsf/Content/national-strategic-framework-rural-remote-health.

Amukele T, Ness PM, Tobian AAR, Boyd J, Street J. Drone transportation of blood products. Transfus Pract. 2017;57(3):582–8. https://doi.org/10.1111/trf.13900.

Sherwood D. This Chilean community is using drones to deliver medicine to the elderly. https://www.weforum.org/agenda/2020/04/drone-chile-covid19/.

Wang XV, Wang L. A literature survey of the robotic technologies during the COVID-19 pandemic. J Manuf Syst. 2021. https://doi.org/10.1016/j.jmsy.2021.02.005.

Therapeutic Goods Administration. Regulation of software as a medical device. https://www.tga.gov.au/regulation-software-medical-device.

Sheppard MK. mHealth apps: disruptive innovation, regulation, and trust—a need for balance. Med Law Rev. 2020;28(3):549–72. https://doi.org/10.1093/medlaw/fwaa019.

Rodriguez Lera FJ, Martín Rico F, Guerrero Higueras AM, Olivera VM. A context-awareness model for activity recognition in robot-assisted scenarios. Expert Syst. 2020;37(2): e12481. https://doi.org/10.1111/exsy.12481.

Alam F, Mehmood R, Katib I, Albogami NN, Albeshri A. Data fusion and IoT for smart ubiquitous environments. IEEE Access. 2017;5:9533–54.

Martins GS, Santos L, Dias J. User-adaptive interaction in social robots: a survey focusing on non-physical Interaction. Int J Soc Robot. 2019;11:185–205. https://doi.org/10.1007/s12369-018-0485-4.

Nelson BJ, Kaliakatsos IK, Abbott JJ. Microrobots for minimally invasive medicine. Annu Rev Biomed Eng. 2010. https://doi.org/10.1146/annurev-bioeng-010510-103409.

World robotics 2015 survey—Executive summary. International Federation of Robotics; 2015.

Philbrick V. Leading the lean healthcare journey: driving culture change to increase value. AORN J. 2012;96(4):456–7. https://doi.org/10.1016/j.aorn.2012.07.006.

Doost A. Robot assists hospitals in the fight against COVID-19. https://fox40.com/news/coronavirus/robot-assists-hospitals-in-the-fight-against-covid-19/.

Wang C, Savkin AV, Clout R, Nguyen HT. An intelligent robotic hospital bed for safe transportation of critical neurosurgery patients along crowded hospital corridors. IEEE Trans Neural Syst Rehabil Eng. 2015;23(5):744–54. https://doi.org/10.1109/TNSRE.2014.2347377.

Wang C, Matveev AS, Savkin AV, Clout R, Nguyen HT. A semi-autonomous motorized mobile hospital bed for safe transportation of head injury patients in dynamic hospital environments without bed switching. Robotica. 2016;34(8):1880–97. https://doi.org/10.1017/S0263574714002641.

Willach. Australia’s leading dispensary automation technology at your fingertips! https://willach.com.au/.

Omnicell. Robomat Robotic Dispensing System. www.omnicell.com/products/robomat-robotic-dispensing-system.

Diligent Robotics. Moxi. https://diligentrobots.com/moxi.

Aethon. TUG: Change Healthcare. https://aethon.com/mobile-robots-for-healthcare/.

Keenon. Start at one touch: Delivery RobotT1. www.keenonrobot.com/en/Product/pro2.html.

Aim Lab. PathFinder 350A. www.aimlab.com/pathology-automation/?doing_wp_cron=1573019037.7309820652008056640625.

Beckman Coulter. AutoMate 2500. www.beckmancoulter.com/en/products/automation/automate-2500-family-sample-processing-systems.

UVD Robots. The only disinfection system clinically proven to disinfect effectively while ’on the move’. www.uvd-robots.com/robots.

Akara Robotics. Cleaning reimagined. www.akara.ai/.

Invento Robotics. C-Astra for disinfection. https://mitrarobot.com/covid/#profile.

Australian Civil Aviation Safety Authority. Drones. www.casa.gov.au/drones.

Holland LL, Smith LL, Blick KE. Total laboratory automation can help eliminate the laboratory as a factor in emergency department length of stay. Am J Clin Pathol. 2006;125(5):765–70. https://doi.org/10.1309/3J5P9VJRUP4U5RU5.

Maalouf N, Sidaoui A, Elhajj IH, Asmar D. Robotics in nursing: a scoping review. J Nurs Scholarsh. 2018;50(6):590–600. https://doi.org/10.1111/jnu.12424.

Desin Robotics. Obi, the first dining robot of its kind. https://meetobi.com/.

Neater Solutions. Neater Eater. https://neater.co.uk/.

Leaman J, La HM. A comprehensive review of smart wheelchairs: past, present, and future. IEEE Trans Hum-Mach Syst. 2017;47(4):486–489. https://doi.org/10.1109/THMS.2017.2706727. arXiv:1704.04697.

Heater B. Toyota and Dean Kamen are bringing back the iBOT motorized, stair-climbing wheelchair. https://techcrunch.com/2016/05/23/ibot-wheelchair/.

Robotikworld. LEA (The Lean Empowering Assistant). http://www.robotikworld.com/lea/.

Spenko M, Yu H, Dubowsky S. Robotic personal aids for mobility and monitoring for the elderly. IEEE Trans Neural Syst Rehabil Eng. 2006;14(3):344–51. https://doi.org/10.1109/TNSRE.2006.881534.

Bilyea A, Seth N, Nesathurai S, Abdullah HAA. Robotic assistants in personal care: a scoping review. Med Eng Phys. 2017;49:1–6. https://doi.org/10.1016/j.medengphy.2017.06.038.

Ktistakis IP, Bourbakis NG. A survey on robotic wheelchairs mounted with robotic arms. In: IEEE national aerospace electronics conference. 2016. p. 258–262. https://doi.org/10.1109/NAECON.2015.7443079.

Kinova. Kinova Jaco Assistive Robotic Arm. https://www.kinovarobotics.com/en/assistive-technologies/column-a1/kinova-assistive-robotic-arm.

Witteveen HJB, Droog EA, Rietman JS, Veltink PH. Vibro- and electrotactile user feedback on hand opening for myoelectric forearm prostheses. IEEE Trans Biomed Eng. 2012;59(8):2219–26. https://doi.org/10.1109/TBME.2012.2200678.

Rehmat N, Zuo J, Meng W, Liu Q, Xie SQ, Liang H. Upper limb rehabilitation using robotic exoskeleton systems: a systematic review. Int J Intell Robot Appl. 2018;2(3):283–95. https://doi.org/10.1007/s41315-018-0064-8.

Hocoma. Hocoma: Advanced Technologies for Movement Rehabilitation. https://www.hocoma.com/.

Szondy D. Robear robot care bear designed to serve Japan’s aging population. https://newatlas.com/robear-riken/36219/.

Böhlen M, Karppi T. The making of Robot Care. Transformations. 2017;29:22.

Shukla J, Cristiano J, Oliver J, Puig D. Robot assisted interventions for individuals with intellectual disabilities: impact on users and caregivers. Int J Soc Robot. 2019;11(4):631–49. https://doi.org/10.1007/s12369-019-00527-w.

Petersen S, Houston S, Qin H, Tague C, Studley J. The utilization of robotic pets in dementia care. J Alzheimer’s Dis. 2017;55(2):569–74. https://doi.org/10.3233/JAD-160703.

Ras BR. Mabu helps patients with chronic health issues manage their treatment. https://www.goodnet.org/articles/this-small-robot-helps-take-care-patients.

Catalia Health. Mobu: Leading Remote Care Management. http://www.cataliahealth.com/.

Aflac. My Special Aflac Duck. https://www.aflacchildhoodcancer.org/.

Abou Allaban A, Wang M, Padır T. A systematic review of robotics research in support of in-home care for older adults. Information. 2020;11(75):23. https://doi.org/10.3390/info11020075.

Vanderborght B, Simut R, Saldien J, Pop C, Rusu AS, Pintea S, et al. Using the social robot probo as a social story telling agent for children with ASD. Interact Stud. 2012;13(3):348–72. https://doi.org/10.1075/is.13.3.02van.

Scoglio AA, Reilly ED, Gorman JA, Drebing CE. Use of social robots in mental health and well-being research: systematic review. J Med Internet Res. 2019;21(7): e13322. https://doi.org/10.2196/13322.

Costescu CA, Vanderborght B, David DO. The effects of robot-enhanced psychotherapy: a meta-analysis. Rev Gen Psychol. 2014;18(2):127–36. https://doi.org/10.1037/gpr0000007.

Henkemans OAB, Bierman BPB, Janssen J, Looije R, Neerincx MA, van Dooren MMM, et al. Design and evaluation of a personal robot playing a self-management education game with children with diabetes Type 1. Int J Hum Comput Stud. 2017;106:63–76. https://doi.org/10.1016/j.ijhcs.2017.06.001.

Alemi M, Ghanbarzadeh A, Meghdari A, Moghadam LJ. Clinical application of a humanoid robot in pediatric cancer interventions. Int J Soc Robot. 2016;8(5):743–59. https://doi.org/10.1007/s12369-015-0294-y.

Buitrago JA, Bolaños AM, Caicedo Bravo E. A motor learning therapeutic intervention for a child with cerebral palsy through a social assistive robot. Disabil Rehabil Assist Technol. 2020;15(3):357–62. https://doi.org/10.1080/17483107.2019.1578999.

Lins AA, de Oliveira JM, JPC Rodrigues J, de Albuquerque VCH, P C Rodrigues JJ. Robot-assisted therapy for rehabilitation of children with Cerebral Palsy—a complementary and alternative approach. Comput Hum Behav. 2019;100:152–167. https://doi.org/10.1016/j.chb.2018.05.012.

Asus. Zenbo—Your smart little companion. https://zenbo.asus.com/.

Buddy. Buddy, the emotional robot. https://buddytherobot.com/en/buddy-the-emotional-robot/.

Fraunhofer Institute for Manufacturing Engineering and Automation1. Care-O-bot 4. https://www.care-o-bot.de/en/care-o-bot-4.html.

Fernbach N, Rafferty S. Townsville Hospital hosts humanoid robot in Australian first trial. https://www.abc.net.au/news/2018-08-24/townsville-hospital-trials-robot-helper/10157200.

Johanson DL, Ahn HS, Sutherland CJ, Brown B, MacDonald BA, Lim JY, et al. Smiling and use of first-name by a healthcare receptionist robot: Effects on user perceptions, attitudes, and behaviours. Paladyn. 2020;11(1):40–51. https://doi.org/10.1515/pjbr-2020-0008.

Johnston M. Sydney Hospital trials multilingual wayfinding robot. https://www.itnews.com.au/news/sydney-hospital-deploys-multilingual-wayfinding-robot-539227.

Dawe J, Sutherland C, Barco A, Broadbent E. Can social robots help children in healthcare contexts? A scoping review. BMJ Paediatr Open. 2019;3(1): e000371. https://doi.org/10.1136/bmjpo-2018-000371.

Johnston C. Canberra Hospital’s most entertaining employee. https://www.act.gov.au/our-canberra/latest-news/2018/august/canberra-hospitals-most-entertaining-employee.

Tasaki R, Kitazaki M, Miura J, Terashima K. Prototype design of medical round supporting robot ‘Terapio’. In: IEEE international conference on robotics and automation. IEEE; 2015. p. 829–834.

Robinson NL, Cottier TV, Kavanagh DJ. Psychosocial health interventions by social robots: systematic review of randomized controlled trials. J Med Internet Res. 2019;21(5): e13203. https://doi.org/10.2196/13203.

Krishna JR. Telerobotic surgery: transcending barriers. World J Laparosc Surg. 2017;10(2):57–60. https://doi.org/10.5005/jp-journals-10033-1304.

Marescaux J, Leroy J, Rubino F, Smith M, Vix M, Simone M, et al. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235(4):487–92. https://doi.org/10.1097/00000658-200204000-00005.

Evans CR, Medina MG, Dwyer AM. Telemedicine and telerobotics: from science fiction to reality. Updates Surg. 2018;70(3):357–62. https://doi.org/10.1007/s13304-018-0574-9.

Atashzar SF, Polushin IG, Patel RV. A small-gain approach for nonpassive bilateral telerobotic rehabilitation: stability analysis and controller synthesis. IEEE Trans Robot. 2017;33(1):49–66. https://doi.org/10.1109/TRO.2016.2623336.

Ackerman E. iRobot and InTouch Health Announce RP-VITA Telemedicine Robot. IEEE Spectrum. 2012. p. 4.

Smith A. iRobot’s Medical Robot Gets FDA Approval for Hospital Use. MashableAustralia. 2013. p. 5.

Cortellessa G, Fracasso F, Sorrentino A, Orlandini A, Bernardi G, Coraci L, et al. ROBIN, a telepresence robot to support older users monitoring and social inclusion: development and evaluation. Telemed e-Health. 2018;24(2):145–54. https://doi.org/10.1089/tmj.2016.0258.

Ellison LM, Nguyen M, Fabrizio MD, Soh A, Permpongkosol S, Kavoussi LR. Postoperative robotic telerounding: a multicenter randomized assessment of patient outcomes and satisfaction. Arch Surg. 2007;142(12):1177–81. https://doi.org/10.1001/archsurg.142.12.1177.

Daruwalla ZJ, Collins DR, Moore DP. “Orthobot, to your station!’’ The application of the remote presence robotic system in orthopaedic surgery in Ireland: a pilot study on patient and nursing staff satisfaction. J Robot Surg. 2010;4(3):177–82. https://doi.org/10.1007/s11701-010-0207-x.

Shi G, Shah P, Canares T, Zimmer-Galler I. Improving the pediatric hospital experience using telepresence robotics. JMIR. 2019;5(1): e15259. https://doi.org/10.2196/15259.

La Rose D, Taylor RH, Funda J, Eldridge B, Gomory S, Talamini M, et al. A telerobotic assistant for laparoscopic surgery. IEEE Eng Med Biol Mag. 1995. https://doi.org/10.1109/51.391776.

Butner SE, Ghodoussi M. Transforming a surgical robot for human telesurgery. IEEE Trans Robot Autom. 2003;19(5):818–24. https://doi.org/10.1109/TRA.2003.817214.

Intuitive Surgical. Da Vinci Surgical systems: integrated technologies for robotic-assisted surgery. https://www.intuitive.com/en-us/products-and-services/da-vinci/systems.

Riga CV, Bicknell CD, Rolls A, Cheshire NJ, Hamady MS. Robot-assisted fenestrated endovascular aneurysm repair (FEVAR) using the Magellan system. J Vasc Interv Radiol. 2013;24(2):191–6. https://doi.org/10.1016/j.jvir.2012.10.006.

Auris Health. Monarch: Endoscopy transformed. https://www.aurishealth.com/monarch-platform.

Voros S, Haber GP, Menudet JF, Long JA, Cinquin P. ViKY robotic scope holder: initial clinical experience and preliminary results using instrument tracking. IEEE/ASME Trans Mechatron. 2010;15(6):879–86. https://doi.org/10.1109/TMECH.2010.2080683.

Zhang Q, Han XG, Xu YF, Fan MX, Zhao JW, Liu YJ, et al. Robotic navigation during spine surgery. Expert Rev Med Devices. 2020;17(1):27–32. https://doi.org/10.1080/17434440.2020.1699405.

Lefranc M, Peltier J. Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures. Expert Rev Med Devices. 2016;13(10):899–906. https://doi.org/10.1080/17434440.2016.1236680.

Miller R. Medtronic launches hugo to rival Intuitive’s Robotic Surgery System. Informa Pharma Intell. 2019;164:21–3.

Li QH, Zamorano L, Pandya A, Perez R, Gong J, Diaz F. The application accuracy of the NeuroMate robot–a quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg. 2002;7(2):90–8. https://doi.org/10.3109/10929080209146020.

Jakopec M, Rodriguez y Baena F, Harris SJ, Gomes P, Cobb J, Davies BL. The hands-on orthopaedic robot "Acrobot": early clinical trials of total knee replacement surgery. IEEE Trans Robot Autom. 2003;19(5):902–911. https://doi.org/10.1109/TRA.2003.817510.

Stryker. Mako: Robotic-Arm Assisted Surgery. https://www.stryker.com/us/en/portfolios/orthopaedics/joint-replacement/mako-robotic-arm-assisted-surgery.html.

Lang JE, Mannava S, Floyd AJ, Goddard MS, Smith BP, Mofidi A, et al. Robotic systems in orthopaedic surgery. J Bone Jt Surg Ser B. 2011;93(10):1296–9. https://doi.org/10.1302/0301-620X.93B10.27418.

Varghese A, Doglioli M, Fader AN. Updates and controversies of robotic-assisted surgery in gynecologic surgery. Clin Obstet Gynecol. 2019;176(3):139–48. https://doi.org/10.1097/GRF.0000000000000489.Updates.

Alemzadeh H, Raman J, Leveson N, Kalbarczyk Z, Iyer RK. Adverse events in robotic surgery: a retrospective study of 14 years of data. PLoS One. 2016;11(4): e0151470. https://doi.org/10.1371/journal.pone.0151470.

Choi H, Kwak HS, Lim YA, Kim HJ. Surgical robot for single-incision laparoscopic surgery. IEEE Trans Biomed Eng. 2014;61(9):2458–66. https://doi.org/10.1109/TBME.2014.2320941.

Wang X, Meng MQH. Robotics for natural orifice transluminal endoscopic surgery: a review. J Robot. 2012;2012:1–9. https://doi.org/10.1155/2012/512616.

Valdastri P, Simi M, Webster RJ. Advanced technologies for gastrointestinal endoscopy. Annu Rev Biomed Eng. 2012. https://doi.org/10.1146/annurev-bioeng-071811-150006.

Ahmad U, Faiyazuddin M. Smart nanobots: the future in nanomedicine and biotherapeutics. J Nanomed Biother Discov. 2016;6(1):2. https://doi.org/10.4172/2155-983x.1000e140.

Baudrit JRV, Gutierrez B, Bermudez CV, Urena YRC, Chacon SV. Nanobots: development and future. Int J Biosens Bioelectron. 2017;2(5):00037. https://doi.org/10.15406/ijbsbe.2017.02.00037

Beasley RA. Medical robots: current systems and research directions. J Robot. 2012;2012:1–14. https://doi.org/10.1155/2012/401613.

Kasahara Y, Kawana H, Usuda S, Ohnishi K. Telerobotic-assisted bone-drilling system using bilateral control with feed operation scaling and cutting force scaling. Int J Med Robot Comput Assist Surg. 2012;8(2):221–9. https://doi.org/10.1002/rcs.457.

Rafii-Tari H, Payne CJ, Yang GZ. Current and emerging robot-assisted endovascular catheterization technologies: a review. Ann Biomed Eng. 2014;42(4):697–715. https://doi.org/10.1007/s10439-013-0946-8.

Li SQ, Guo WL, Liu H, Wang T, Zhou YY, Yu T, et al. Clinical application of an intelligent oropharyngeal swab robot: implication for the COVID-19 pandemic. Eur Respir J. 2020. https://doi.org/10.1183/13993003.01912-2020.

Lifeline Robotics. World’s First Automatic Swab Robot. https://www.lifelinerobotics.com/.

Vitiello V, Lee SL, Cundy TP, Yang GZ. Emerging robotic platforms for minimally invasive surgery. IEEE Rev Biomed Eng. 2013;6:111–26. https://doi.org/10.1109/RBME.2012.2236311.

Carros F, Meurer J, Löffler D, Unbehaun D, Matthies S, Koch I, et al. Exploring human-robot interaction with the elderly: results from a ten-week case study in a care home. In: Conference on human factors in computing systems. 2020. p. 12.