Hobbit, a care robot supporting independent living at home: First prototype and lessons learned

Robotics and Autonomous Systems - Tập 75 - Trang 60-78 - 2016
David Fischinger1, Peter Einramhof1, Konstantinos Papoutsakis2, Walter Wohlkinger1, Peter Mayer3, Paul Panek3, Stefan Hofmann4, Tobias Koertner5, Astrid Weiss1, Antonis Argyros2, Markus Vincze1
1Automation an Control Institute (ACIN), Vienna University of Technology, 1040 Vienna, Austria
2Institute of Computer Science, FORTH, Heraklion, Crete, Greece
3Fortec group, Vienna University of Technology, 1040 Vienna, Austria
4Hella Automation GmbH, 9913 Abfaltersback, Austria
5Academy for Aging Research, 1160 Vienna, Austria

Tài liệu tham khảo

Gitlin, 2003, Conducting research on home environments: lessons learned and new directions, Gerontologist, 43, 628, 10.1093/geront/43.5.628 Fausset, 2011, Challenges to ageing in place: understanding home maintenance difficulties, J. Hous. Elderly, 25, 125, 10.1080/02763893.2011.571105 Parette, 2004, Assistive technology use and stigma, Educ. Train. Dev. Disabil., 39, 217 “ksera”. [Online]. Available: http://ksera.ieis.tue.nl/. “domeo”. [Online]. Available: http://www.aat.tuwien.ac.at/domeo/index_en.html. “cogniron”. [Online]. Available: http://www.cogniron.org/. “companionable”. [Online]. Available: http://www.companionable.net/. “srs“. [Online]. Available: http://srs-project.eu/. “care-o-bot”. [Online]. Available: http://www.care-o-bot.de/. “accompanyproject”. [Online]. Available: http://www.accompanyproject.eu/. “herb”. [Online]. Available: http://www.cmu.edu/herb-robot/. Broekens, 2009, Assistive social robots in elderly care: a review, Gerontechnology, 8, 94, 10.4017/gt.2009.08.02.002.00 Wada, 2005, Psychological and social effects of one year robot assisted activity on elderly people at a health service facility for the aged, 2785 Graf, 2009, Robotic home assistant care-o-bot® 3-product vision and innovation platform, 139 Schroeter, 2013, Realization and user evaluation of a companion robot for people with mild cognitive impairments, 1153 “IGUS Robolink”. [Online]. Available: http://www.igus.eu/wpck/6076/robolink. “Festo Fin Ray”. [Online]. Available: http://www.festo.com/net/SupportPortal/Files/53886/AdaptiveGripper_DHDG_en.pdf. Oberzaucher, 2009, A videophone prototype system evaluated by Elderly users in the living lab Schwechat, 345 Wölfel, 2009 Panek, 2014, Challenges in adopting speech control for assistive robots Walters, 2007, Robotic etiquette: results from user studies involving a fetch and carry task, 317 Grisetti, 2007, Improved techniques for grid mapping with Rao–Blackwellized particle filters, IEEE Trans. Robot., 23, 34, 10.1109/TRO.2006.889486 Besl, 1992, A method for registration of 3-D shapes, IEEE Trans. PAMI, 14, 239, 10.1109/34.121791 Thrun, 2005 Labayrade, 2002, Real time obstacle detection in stereovision on non flat road geometry through “v-disparity” representation, 646 M. Phillips, M. Likhachev, Planning in domains with cost function dependent actions, in: Twenty-Fifth Conference on Artificial Intelligence (AAAI), San Francisco, USA, 2011. Likhachev, 2005, Anytime dynamic A*: an anytime, replanning algorithm, Science, 262 Moeslund, 2011 K. Papoutsakis, P. Panteleris, A. Ntelidakis, S. Stefanou, X. Zabulis, D. Kosmopoulos, A. Argyros, Developing visual competencies for socially assistive robots: the HOBBIT approach, in: 6th International Conference on Pervasive Technologies for Assistive Environments, 2013. “No Title”. [Online]. Available:http://www.microsoft.com/en-us/kinectforwindows/. C. Plagemann, V. Ganapathi, D. Koller, S. Thrun, Real-time identification and localization of body parts from depth images, in: Robotics and Automation (ICRA), 2010 IEEE International Conference on, 2010, pp. 3108–3113. J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, A. Blake, Efficient human pose estimation from single depth images, in: IEEE PAMI, vol. 99, 2012. “No Title”. [Online]. Available: http://www.openni.org/wp-content/uploads/2013/02/NITE-Algorithms.pdf. “openni”. [Online]. Available: http://www.openni.org/. P. Padeleris, X. Zabulis, A.A. Argyros, Head pose estimation on depth data based on Particle Swarm Optimization, in: Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on, 2012, pp. 42–49. “nite”. [Online]. Available: http://www.primesense.com/solutions/nite-middleware/. D. Fischinger, M. Vincze, Empty the basket—a shape based learning approach for grasping piles of unknown objects, in: IROS, 2012. D. Fischinger, Y. Jiang, M. Vincze, Learning grasps for unknown objects in cluttered scenes, in: International Conference on Robotics and Automation (ICRA), 2013. Diankov, 2008 W. Wohlkinger, M. Vincze, Ensemble of shape functions for 3D object classification, in: ROBIO, 2011. pp. 2987–2992. W. Wohlkinger, A. Aldoma, R.B. Rusu, M. Vincze, 3DNet: large-scale object class recognition from CAD models, in: ICRA, 2012, pp. 5384–5391. Criminisi, 2012, Decision forests for classification, regression, density estimation, manifold learning and semi-supervised learning, Found. Trends Comput. Graph. Vis., 7, 81 Körtner, 2012, How social robots make older users really feel well—a method to assess users’ concepts of a social robotic assistant, 138 Frennert, 2012, Capturing seniors’ requirements for assistive robots by the use of attention cards, 783 J.M. Beer, C.-A. Smarr, T.L. Chen, A. Prakash, T.L. Mitzner, C.C. Kemp, W.A. Rogers, The domesticated robot: design guidelines for assisting older adults to age in place, in: Human–Robot Interaction (HRI), 2012 7th ACM/IEEE International Conference, 2012, pp. 335–342. L. Lammer, A. Huber, W. Zagler, M. Vincze, Mutual-care: users will love their imperfect social assistive robots, in: Proceedings of the International Conference on Social Robotics, 2011, pp. 24–25. L. Lammer, A. Huber, A. Weiss, M. Vincze, Mutual care: how older adults react when they should help their care robot, in: AISB2014: Proceedings of the 3rd International Symposium on New Frontiers in Human–Robot Interaction, 2014. Mayer, 2013, A social assistive robot in an intelligent environment, Biomed. Eng., 10.1515/bmt-2013-4240 N. Noury, A. Fleury, P. Rumeau, A.K. Bourke, G.O. Laighin, V. Rialle, J.E. Lundy, Fall detection—principles and methods, in: EMBS, 2007, pp. 1663–1666. Rougier, 2011, Fall detection from depth map video sequences, 121 Bian, 2012, Fall detection based on skeleton extraction, 91 Mastorakis, 2012, Fall detection system using Kinectâ’s infrared sensor, J. Real-Time Image Process., 1 T. Körtner, A. Schmid, D. Batko-Klein, C. Gisinger, Meeting requirements of older users?—robot prototype trials in a home-like environment, in: Proceedings of HCI International 2014 Conference, Crete, 2014. Lindenberger, 2010 Brooke, 1996, SUS—a quick and dirty usability scale, 194 R. Eisma, A. Dickinson, J. Goodman, A. Syme, L. Tiwari, A.F. Newell, Early user involvement in the development of information technology-related products for older people, 2004, pp. 131–140. H. Knight, A. Chang, Robot design rubrics for social gesture categorization and user studies with children, in: HRI Workshop on …, 2009, pp. 2–5.