Medical telerobotic systems: current status and future trends

Springer Science and Business Media LLC - Tập 15 - Trang 1-44 - 2016
Sotiris Avgousti1, Eftychios G. Christoforou2, Andreas S. Panayides3,4, Sotos Voskarides5, Cyril Novales6, Laurence Nouaille6, Constantinos S. Pattichis4, Pierre Vieyres6
1Nursing Department, School of Health and Science, Cyprus University of Technology, Limassol, Cyprus
2Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
3Department of Electrical and Electronic Engineering, Imperial College, London, UK
4Department of Computer Science, University of Cyprus, Nicosia, Cyprus
5Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Lemesos, Cyprus
6Laboratoire PRISME-Universite d’Orleans, Bourges, France

Tóm tắt

Teleoperated medical robotic systems allow procedures such as surgeries, treatments, and diagnoses to be conducted across short or long distances while utilizing wired and/or wireless communication networks. This study presents a systematic review of the relevant literature between the years 2004 and 2015, focusing on medical teleoperated robotic systems which have witnessed tremendous growth over the examined period. A thorough insight of telerobotics systems discussing design concepts, enabling technologies (namely robotic manipulation, telecommunications, and vision systems), and potential applications in clinical practice is provided, while existing limitations and future trends are also highlighted. A representative paradigm of the short-distance case is the da Vinci Surgical System which is described in order to highlight relevant issues. The long-distance telerobotics concept is exemplified through a case study on diagnostic ultrasound scanning. Moreover, the present review provides a classification into short- and long-distance telerobotic systems, depending on the distance from which they are operated. Telerobotic systems are further categorized with respect to their application field. For the reviewed systems are also examined their engineering characteristics and the employed robotics technology. The current status of the field, its significance, the potential, as well as the challenges that lie ahead are thoroughly discussed.

Tài liệu tham khảo

Beasley RA. Medical robots: current systems and research directions. J Robot. 2012;2012:1–14. Camarillo DB, Krummel TM, Salisbury JK. Robotic technology in surgery: past, present, and future. Am J Surg. 2004;188(4 SUPPL. 1):2–15. Wang Y, Butner SE, Darzi RA. The developing market for medical robotics. Proc IEEE. 2006;94(9):1763–71. Hoeckelmann M, Rudas IJ, Fiorini P, Kirchner F, Haidegger T. Current capabilities and development potential in surgical robotics. Int J Adv Robot Syst. 2015;12(61):1. Troccaz J. Medical robotics. New York: Wiley-ISTE; 2013. Lendvay TS, Rosen J, Hannaford B. Telerobotics: its future in clinical application. In: Pediatric robotic and reconstructive urology: a comprehensive guide, Hoboken: Wiley-Blackwell; 2012. p. 314–27. Butner SE, Ghodoussi M. Transforming a surgical robot for human telesurgery. IEEE Trans Robot Autom. 2003;19(5):818–24. Pugin F, Bucher P, Morel P. History of robotic surgery: from AESOP® and ZEUS® to da Vinci®. J Visc Surg. 2011;148(5):e3–8. Arata J, Takahashi H, Yasunaka S, Onda K, Tanaka K, Sugita N, Tanoue K, Konishi K, Ieiri S, Fujino Y, Ueda Y, Fujimoto H, Mitsuishi M, Hashizume M. Impact of network time-delay and force feedback on tele-surgery. Int J Comput Assist Radiol Surg. 2008;3(3–4):371–8. Zemiti N, Ortmaier T, Morel G. A new robot for force control in minimally invasive surgery. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS) (IEEE Cat. No.04CH37566), vol 4; 2004. p. 3643–8. Aracil R, Buss M, Cobos S, Ferre M, Hirche S, Kuschel M, Peer A. The human role in telerobotics. Springer Tracts Adv Robot. 2007;31:11–24. Kajita S, Espiau B. Springer handbook of robotics. Berlin: Springer; 2008. Dogangil G, Davies BL, Rodriguez y Baena F. A review of medical robotics for minimally invasive soft tissue surgery. J Eng Med. 2010;224(5):653–79. Kristoffersson A, Coradeschi S, Loutfi A. A review of mobile robotic telepresence. Adv Hum Comput Interact. 2013;2013:1–17. Hopkins JK, Spranklin BW, Gupta SK. A survey of snake-inspired robot designs. Bioinspir Biomim. 2009;4(2):021001. Webster RJ, Jones BA. Design and kinematic modeling of constant curvature continuum robots: a review. Int J Rob Res. 2010;29(13):1661–83. Liljebäck P, Pettersen KY, Stavdahl Ø, Gravdahl JT. Snake robots. London: Springer; 2013. Tsekos NV, Khanicheh A, Christoforou E, Mavroidis C. Magnetic resonance-compatible robotic and mechatronics systems for image-guided interventions and rehabilitation: a review study. Annu Rev Biomed Eng. 2007;9(1):351–87. Yang B, Roys S, Tan U-X, Philip M, Richard H, Gullapalli R, Desai JP. Design, development, and evaluation of a master–slave surgical system for breast biopsy under continuous MRI. Int J Rob Res. 2014;33(4):616–30. Bowthorpe M, Tavakoli M, Becher H, Howe R. Smith predictor-based robot control for ultrasound-guided teleoperated beating-heart surgery. IEEE J Biomed Heal Inform. 2014;18(1):157–66. Hokayem PF, Spong MW. Bilateral teleoperation: an historical survey. Automatica. 2006;42(12):2035–57. Niemeyer G. Telemanipulation with Time Delays. Int J Rob Res. 2004;23(9):873–90. Takhmar A, Polushin IG, Talasaz A, Patel RV. Cooperative teleoperation with projection-based force reflection for MIS. IEEE Trans Control Syst Technol. 2015;23(4):1411–26. Liu Y, Khong M. Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics. IEEE ASME Trans Mechatron. 2015;20:2550. Kyriacou E, Pattichis M, Pattichis C. Advanced video coding for generic audiovisual services. IEEE Antennas Propag Mag. 2006;49(1):216–31. Oboe R, Slama T, Trevisani A. Telerobotics through internet: problems, approaches and applications. Analele Univ Din Craiova Mecanica Electroteh. 2007;4:81–90. Islam S, Liu PX, El Saddik A. Nonlinear control for teleoperation systems with time varying delay. Nonlinear Dyn. 2013;76(2):931–54. Rysavy P, LLC. Mobile broadband explosion: the 3GPPP wireless evolution. 2013. http://www.4gamericas.com/en/. Accessed 07 Aug 2015. Barth M, Burkert T, Eberst C, Stoffler NO, Farber G. Photo-realistic scene prediction of partially unknown environments for the compensation of time delays in telepresence applications. IEEE Int Conf on Robot Autom Symp Proc 2000 (Cat. No. 00CH37065). 2000;4:3132. Rayman R, Croome K, Galbraith N, McClure R, Morady R, Peterson S, Smith S, Subotic V, Van Wynsberghe A, Patel R, Primak S. Robotic telesurgery: a real-world comparison of ground- and satellite-based Internet performance. Int J Med Robot Comput Assist Surg. 2007;3(2):111–6. Kim WS, Hannaford B, Fejczy AK. Force-reflection and shared compliant control in operating telemanipulators with time delay. IEEE Trans Robot Autom. 1992;8(2):176–85. Zhu J, He X, Gueaieb W, Kamel M, Karray F, Khamis A. Autonomous and intelligent systems, vol. 6752. Berlin: Springer; 2011. Smith AC. Smith predictor type control architectures for time delayed teleoperation. Int J Rob Res. 2006;25(8):797–818. Hua CC, Liu XP. Delay-dependent stability criteria of teleoperation systems with asymmetric time-varying delays. IEEE Trans Robot. 2010;26(5):925–32. Panayides AS, Pattichis MS, Pattichis CS. Mobile-health systems use diagnostically driven medical video technologies. IEEE Signal Process Mag. 2013;30(6):163. Panayides A, Pattichis MS, Pattichis CS, Loizou CP, Pantziaris M, Pitsillides A. Atherosclerotic plaque ultrasound video encoding, wireless transmission, and quality assessment using H.264. IEEE Trans Inf Technol Biomed. 2011;15(3):387–97. Panayides A, Antoniou ZC, Mylonas Y, Pattichis MS, Pitsillides A, Pattichis CS. High-resolution, low-delay, and error-resilient medical ultrasound video communication using H. 264/AVC over mobile WiMAX networks. IEEE J Biomed Heal Inform. 2013;17(3):619–28. Antoniou Z, Panayides AS, Pattichis MS, Stavrou S, Kyriacou E, Spanias A, Constantinides AG, Pattichis CS. Adaptive emergency scenery video communications using HEVC for Responsive decision support in disaster incidents. In: IEEE Engineering in Medicine and Biology Conference; 2015. Ballantyne GH, Moll F. The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery. Surg Clin North Am. 2003;83(6):1293–304. Freschi C, Ferrari V, Melfi F, Ferrari M, Mosca F, Cuschieri A. Technical review of the da Vinci surgical telemanipulator. Int J Med Robot Comput Assist Surg. 2013;9(4):396–406. Haidegger T, Sándor J, Benyó Z. Surgery in space: the future of robotic telesurgery. Surg Endosc Other Interv Tech. 2011;25(3):681–90. High level of evidence (LOE) Publications. Intuitive surgical. http://www.intuitivesurgical.com/company/media/publications/da-vinci-surgery-high-LOE-publications-en-031114.pdf. Accessed 13 Jan 2016. Thavaneswaran et al. Robotic-assisted surgery for urological, cardiac and gynaecological procedures. ASERNIP-S Rep. No. 75; 2009. Gourdon A, Vieyres P, Poignet P, Szpieg M, Arbeille P. A tele-scanning robotic system using satellite communication. Proc Eur Med Biol Eng Conf. 1999:1402. Onogi S, Urayama Y, Irisawa S, Masuda K. Robotic ultrasound probe handling auxiliary by active compliance control. Adv Robot. 2013;27(7):503–12. Vilchis A, Troccaz J, Cinquin P, Masuda K, Pellissier F. A New Robot Architecture for Tele-Echography. IEEE Trans Robot Autom. 2003;19(5):922–6. Vieyres P, Poisson G, Courrèges F, Smith-guerin N, Novales C, Arbeille P. A tele-operated robotic system for mobile tele-echography : the Otelo Project. M-Health. Berlin: Springer; 2006. p. 461–73. Voskarides S, Avgousti S, Kassinopoulos M, Florides G, Pattichis C, Tziakouri C, Hadjinicolaou M, Capri A, Vieyres P, Poisson G, Philippe A, Smith-Guerin N, Fonte A, Mourioux G, Josserand L, Novales C. MARTE project: tele-echography between Kyperounta and Nicosia (Cyprus). IFAC Proceedings Volumes (IFAC-PapersOnline). 2006;9(Part 1):367–72. Vieyres P, Poisson G, Courreges F, Merigeaux O, Arbeille P. The TERESA project: from space research to ground tele-echography. Ind Robot. 2003;30(1):77–82. Buss M, Schmidt G. Control problems in multi-modal telepresence systems. In: Advances in control. London: Springer; 1999. p. 65–101. Guerraz A. Etude du télégeste médical non invasif utilisant un transducteur gestuel à retour d’efforts. Grenoble: Université Joseph-Fourier-Grenoble I; 2002. Courreges F. Contributions à la conception et commande de robots de télé- chographie. Orléans: Orléans University; 2003. Garawi S, Istepanian RSH, Abu-Rgheff MA. 3G wireless communications for mobile robotic tele-ultrasonography systems. IEEE Commun Mag. 2006;44(4):91–6. Vieyres ELP, Novales C, Rivas R, Vilcahuaman L, Sandoval J, Clark T, DeStigter K, Josserand L, Morrison Z, Robertson A, Avgousti S, Morette N, Voskarides S, Fonte A, Kasparis T. The next challenge for WOrld wide Robotized Tele-Echography eXperiment (WORTEX 2012): from engineering success to healthcare delivery. In: Congreso Peruano De Ingeniería Biomédica, Bioingeniería, Biotecnología y Física Médica (TUMI II); 2013. Abolhassani N, Patel RV. Teleoperated master-slave needle insertion. Int J Med Robot Comput Assist Surg. 2009;5(4):398–405. Ohara F, Hata N, Hashimoto R, Hashizume M, Dohi T. Needle guiding robot with five-bar linkage for MR guided thermotherapy of liver tumor. J Life Support Eng. 2004;16(Supplement):235–6. Yang B, Tan U, McMillan A. Towards the development of a master–slave surgical system for breast biopsy under continuous MRI. In: Experimental robotics, vol 88. Berlin: Springer; 2013. p. 565–77. Tovar-Arriaga S, Tita R, Pedraza-Ortega JC, Gorrostieta E, Kalender WA. Development of a robotic FD-CT-guided navigation system for needle placement-preliminary accuracy tests. Int J Med Robot Comput Assist Surg. 2011;7(2):225–36. Feng M, Fu Y, Pan B, Liu C. Development of a medical robot system for minimally invasive surgery. Int J Med Robot. 2012;8(1):85–96. Van Den Bedem L, Rosielle N, Steinbuch M. Design of a slave robot for laparoscopic and thoracoscopic surgery. In: Proceedings 20th international conference for medical innovation and technology; 2008. p. 1–4. Bogue R. Robots in healthcare. Ind Robot Int J. 2011;38(3):218–23. Sofie R. SOFIE: Surgeon’s Operating Force feedback Interface Eindhoven. 2010. http://www.allaboutroboticsurgery.com/surgicalrobots.html. Accessed 26 Jun 2015. Larocca V, Marino F, De Filippis A, Gidaro S, Lococo A. A new operative telesurgical system: telelap Alf-X—experimental study on animal model. J Adv Biotechnol Bioeng. 2014;2(1):12–5. Gidaro S, Buscarini M, Ruiz E, Stark M, Labruzzo A. Telelap Alf-X: a novel telesurgical system for the 21st century. Surg Technol Int. 2012;22:20–5. Hassan T, Hameed A, Nisar S, Kamal N, Hasan O. Al-Zahrawi: a telesurgical robotic system for minimal invasive surgery. IEEE Syst J. 2014;PP(99):1–11. Simaan N, Xu K, Wei W, Kapoor A, Kazanzides P, Taylor R, Flint P. Design and integration of a telerobotic system for minimally invasive surgery of the throat. Int J Rob Res. 2009;28(9):1134–53. Xu K, Zhao J, Zheng X. Configuration comparison among kinematically optimized continuum manipulators for robotic surgeries through a single access port. Robotica. 2014;33(10):2025–44. Kobayashi Y, Tomono Y, Sekiguchi Y, Watanabe H, Toyoda K, Konishi K, Tomikawa M, Ieiri S, Tanoue K, Hashizume M, Fujie MG. A surgical robot with vision field control for single port endoscopic surgery. Int J Med Robot. 2010;6(4):454–64. Petroni G, Niccolini M, Caccavaro S, Quaglia C, Menciassi A, Schostek S, Basili G, Goletti O, Schurr MO, Dario P. A novel robotic system for single-port laparoscopic surgery: preliminary experience. Surg Endosc Other Interv Tech. 2013;27(6):1932–7. Bardou B, Nageotte F. Design of a robotized flexible endoscope for natural orifice transluminal endoscopic surgery. In: Computational surgery and dual training. Berlin: Springer; 2010. p. 155–70. Lehman AC, Wood NA, Farritor S, Goede MR, Oleynikov D. Dexterous miniature robot for advanced minimally invasive surgery. Surg Endosc. 2011;25(1):119–23. Meng C, Zhang J, Liu D, Liu B, Zhou F. A remote-controlled vascular interventional robot: system structure and image guidance. Int J Med Robot Comput Assist Surg. 2013;9(2):230–9. Kasahara Y, Kawana H, Usuda S, Ohnishi K. Telerobotic-assisted bone-drilling system using bilateral control with feed operation scaling and cutting force scaling. Int J Med Robot Comput Assist Surg. 2012;8(2):221–9. Garcia P, Rosen J, Kapoor C, Noakes M, Elbert G, Treat M, Ganous T, Hanson M, Manak J, Hasser C, Rohler D, Satava R. Trauma pod: a semi-automated telerobotic surgical system. Int J Med Robot Comput Assist Surg. 2009;5(2):136–46. Kim KY, Lee JJ. Design and evaluation of a slave manipulator with roll-pitch-roll wrist and automatic tool loading mechanism in telerobotic surgery. Int J Med Robot Comput Assist Surg. 2012;8(4):421–35. Hu Y, Li D, Zong G, Sun X. Robotic system for microsurgical keratoplasty. IEEE Eng Med Biol Soc Conf. 2005;6:5762–5. Dharamsi LM, Bajo A, Netterville JL, Garrett CG, Simaan N. Evaluation of a telerobotic system for transnasal surgery of the larynx and airways in cadavers. Otolaryngol Head Neck Surg. 2014;151(1):107–11. Mattei TA, Rodriguez AH, Sambhara D, Mendel E. Current state-of-the-art and future perspectives of robotic technology in neurosurgery. Neurosurg Rev. 2014;37(3):357–66. Doulgeris J, MSME S, MSBE A. Robotics in neurosurgery: evolution, current challenges, and compromises. Cancer Control. 2015;22(3). Rossi A, Trevisani A, Zanotto V. A telerobotic haptic system for minimally invasive stereotactic neurosurgery. Int J Med Robot. 2005;1(2):64–75. Rossi A, Trevisani A, Zanotto V. Design and implementation of a mechatronic device for robot-assisted neurosurgery. In: Proceedings of 2005 IEEE conference on control applications, 2005. CCA 2005; 2005. p. 7–12. Sutherland GR, Latour I, Greer AD, Fielding T, Feil G, Newhook P. An image-guided magnetic resonance-compatible surgical robot. Neurosurgery. 2008;62(2):286–93. Sutherland GR, McBeth PB, Louw DF. NeuroArm: an MR compatible robot for microsurgery. Int Congr Ser. 2003;1256:504–8. Raoufi C, Goldenberg AA, Kucharczyk W. Design and control of a novel hydraulically/pneumatically actuated robotic system for MRI-guided neurosurgery. Biomed Sci Eng. 2008;1(May):68–74. Mitsuishi M, Morita A, Sugita N, Sora S, Mochizuki R, Tanimoto K, Baek YM, Takahashi H, Harada K. Master-slave robotic platform and its feasibility study for micro-neurosurgery. Int J Med Robot Comput Assist Surg. 2013;9(2):180–9. Nakamura H, Taniguchi Y. Robot-assisted thoracoscopic surgery: current status and prospects. Gen Thorac Cardiovasc Surg. 2013;61(3):127–32. Mayer H, Nagy I, Knoll A, Schirmbeek EU, Bauernschmitt R. A robotic system providing force feedback and automation for minimally invasive heart surgery. Int J Comput Assist Radiol Surg. 2006;1(SUPPL. 7):265–7. Kuebler B, Seibold U, Hirzinger G. Development of actuated and sensor integrated forceps for minimally invasive robotic surger. Int J Med Robot. 2005;1(3):96–107. Hagn U, Konietschke R, Tobergte A, Nickl M, Jörg S, Kübler B, Passig G, Gröger M, Fröhlich F, Seibold U, Le-Tien L, Albu-Schäffer A, Nothhelfer A, Hacker F, Grebenstein M, Hirzinger G. DLR MiroSurge: a versatile system for research in endoscopic telesurgery. Int J Comput Assist Radiol Surg. 2010;5(2):183–93. Häcker A, Chauhan S, Peters K, Hildenbrand R, Marlinghaus E, Alken P, Michel MS. Multiple high-intensity focused ultrasound probes for kidney-tissue ablation. J Endourol. 2005;19(8):1036–40. Hsu JK, Li T, Payandeh S. On integration of a novel minimally invasive surgery robotic system. In: Proceedings 2005 international conference on advanced robotics, ICAR’05, vol 2005; 2005. p. 437–44. Ishii C. Extension of motion space for double-screw-drive bending mechanism. J Commun Comput. 2012;9:507–15. Trejos AL, Lin AW, Pytel MP, Patel RV, Malthaner RA. Robot-assisted minimally invasive lung brachytherapy. Int J Med Robot Comput Assist Surg. 2007;3(1):41–51. Antoniou GA, Riga CV, Mayer EK, Cheshire NJW, Bicknell CD. Clinical applications of robotic technology in vascular and endovascular surgery. J Vasc Surg. 2011;53(2):493–9. Ota T, Patronik NA, Riviere CN, Zenati MA. Percutaneous subxiphoid access to the epicardium using a miniature crawling robotic device. Innov Technol Tech Cardiothorac Vasc Surg. 2006;1(4):200–1. Patronik NA, Zenati MA, Riviere CN. A study ex vivo of the effect of epicardial fat on the heartlander robotic crawler. IFMBE Proc. 2012;37(Part 1, Part 3):227–30. Saliba W, Reddy VY, Wazni O, Cummings JE, Burkhardt JD, Haissaguerre M, Kautzner J, Peichl P, Neuzil P, Schibgilla V, Noelker G, Brachmann J, Di Biase L, Barrett C, Jais P, Natale A. Atrial fibrillation ablation using a robotic catheter remote control system: initial human experience and long-term follow-up results. J Am Coll Cardiol. 2008;51(25):2407–11. Saliba W, Ernst S, Reddy V, Kuck K. Remote catheter navigation. In: Atrial fibrillation. New York: Humana Press; 2008. p. 385–96. Castro CA, Alqassis A, Smith S, Ketterl T, Sun Y, Ross S, Rosemurgy A, Savage PP, Gitlin RD. A wireless robot for networked laparoscopy. IEEE Trans Biomed Eng. 2013;60(4):930–6. Zuo J, Yan G, Gao Z. A micro creeping robot for colonoscopy based on the earthworm. J Med Eng Technol. 2005;29(1):1–7. Ciuti G, Valdastri P, Menciassi A, Dario P. Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. Robotica. 2010;28(02):199–207. Quirini M, Menciassi A, Scapellato S, Stefanini C, Dario P. Design and fabrication of a motor legged capsule for the active exploration of the gastrointestinal tract. IEEE ASME Trans Mechatron. 2008;13(2):169–79. Wang K, Yan G, Jiang P, Ye D. A wireless robotic endoscope for gastrointestine. IEEE Trans Robot. 2008;24(1):206–10. Nedas TG, Challacombe BJ, Dasgupta P. Robotics in urology: an update. Int J Med Robot. 2005;1(2):13–8. Salcudean SE, Prananta TD, Morris WJ, Spadinger I. A robotic needle guide for prostate brachytherapy. In: Proceedings-IEEE international conference on robotics and automation; 2008. p. 2975–81. Goldenberg AA, Trachtenberg J, Kucharczyk W, Yi Y, Haider M, Ma L, Weersink R, Raoufi C. Robotic system for closed-bore MRI-guided prostatic interventions. IEEE ASME Trans Mechatron. 2008;13(3):374–9. Fischer GS, Iordachita I, Csoma C, Tokuda J, DiMaio SP, Tempany CM, Hata N, Fichtinger G. MRI-compatible pneumatic robot for transperineal prostate needle placement. IEEE ASME Trans Mechatron. 2008;13(3):295–305. Bertelsen A, Melo J, Sánchez E, Borro D. A review of surgical robots for spinal interventions. Int J Med Robot Comput Assist Surg. 2013;9(4):407–22. Shweikeh F, Amadio JP, Arnell M, Barnard ZR, Kim TT, Johnson JP, Drazin D. Robotics and the spine: a review of current and ongoing applications. Neurosurg Focus. 2014;36(3):E10. Ju H,Zhang J,An G, Pei X, Xing G. A robot-assisted system for minimally invasive spine surgery of percutaneous vertebroplasty based on CT images. In: 2008 IEEE international conference on robotics, automation and mechatronics, RAM 2008; 2008. p. 290–5. Lee J, Hwang I, Kim K, Choi S, Chung WK, Kim YS. Cooperative robotic assistant with drill-by-wire end-effector for spinal fusion surgery. Ind Robot Int J. 2009;36(1):60–72. Ascari L, Stefanini C, Bertocchi U, Dario P. Robot-assisted endoscopic exploration of the spinal cord. Proc Inst Mech Eng Part C J Mech Eng Sci. 2010;224(7):1515–29. Lum MJH, Friedman DCW, Sankaranarayanan G, King H, Fodero K, Leuschke R, Hannaford B, Rosen J, Sinanan MN. The RAVEN: design and validation of a telesurgery system. Int J Rob Res. 2009;28(9):1183–97. Choi J, Park JW, Kim DJ, Shin J, Park CY, Lee JC, Jo YH. Lapabot: a compact telesurgical robot system for minimally invasive surgery: part I. System description. Minim Invasive Ther Allied Technol. 2012;21(3):188–94. Guo J, Guo S, Xiao N, Ma X, Yoshida S, Tamiya T, Kawanishi M. A novel robotic catheter system with force and visual feedback for vascular interventional surgery. Int J Mechatron Autom. 2012;2(1):15. Boschetti G, Rosati G, Rossi A. A telerobotic haptic system for minimally invasive stereotactic neurosurgery. In: Proceedings of the IEEE international conference on control applications; 2005. p. 19–24. Monfaredi R, Wilson E, Azizi Koutenaei B, Labrecque B, Leroy K, Goldie J, Louis E, Swerdlow D, Cleary K. Robot-assisted ultrasound imaging: overview and development of a parallel telerobotic system. Minim Invasive Ther Allied Technol. 2015;24(1):54–62. Vieyres P, Sandoval J, Josserand L, Novales C, Chiccoli M, Morette N, Fonte A, Avgousti S, Voskarides S, Kasparis T. An anticipative control approach and interactive GUI to enhance the rendering of the distal robot interaction with its environment during robotized tele-echography. Int J Monit Surveill Technol Res. 2013;1(3):1–19. AdechoTech. http://www.adechotech.fr/en. Accessed 07 Aug 2015. Najafi F, Sepehri N. A novel hand-controller for remote ultrasound imaging. Mechatronics. 2008;18(10):578–90. Ito K, Sugano S, Takeuchi R, Nakamura K, Iwata H. Usability and performance of a wearable tele-echography robot for focused assessment of trauma using sonography. Med Eng Phys. 2013;35(2):165–71. Sengupta PP, Narula N, Modesto K, Doukky R, Doherty S, Soble J, Narula J. Feasibility of intercity and trans-atlantic telerobotic remote ultrasound. JACC Cardiovasc Imaging. 2014;7(8):804–9. Zuckerman DM, Brown P, Nissen SE. Medical device recalls and the FDA approval process. Arch Intern Med. 2011;171(11):1006–11. Taylor RH, Kazanzides P. Medical robotics and computer-integrated interventional medicine. Biomed Inf Technol. 2008;73:393–416. Lim SC, Lee HK, Park J. Role of combined tactile and kinesthetic feedback in minimally invasive surgery. Int J Med Robot Comput Assist Surg. 2015;11(3):360–74. Okamura AM. Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol. 2009;19(1):102–7. Westebring-van der Putten EP, Goossens RHM, Jakimowicz JJ, Dankelman J. Haptics in minimally invasive surgery—a review. Minim Invasive Ther Allied Technol. 2008;17(1):3–16. Low D, Lee CK, Dip LLT, Ng WH, Ang BT, Ng I. Augmented reality neurosurgical planning and navigation for surgical excision of parasagittal, falcine and convexity meningiomas. Br J Neurosurg. 2010;24(1):69–74. Barone DG, Lawrie TA, Hart MG. Image guided surgery for the resection of brain tumours. Cochrane Database Syst Rev. 2014;1:CD009685. Diana M, Marescaux J. Robotic surgery. Br J Surg. 2015;102(2):e15–28. Lindseth F, Kaspersen JH, Ommedal S, Langø T, Bang J, Hokland J, Unsgaard G, Nagelhus Hemes TA. Multimodal image fusion in ultrasound-based neuronavigation: improving overview and interpretation by integrating preoperative MRI with intraoperative 3D ultrasound. Comput Aided Surg. 2015;8(2):49–69. Porter BC, Rubens DJ, Strang JG, Smith J, Totterman S, Parker KJ. Three-dimensional registration and fusion of ultrasound and MRI using major vessels as fiducial markers. IEEE Trans Med Imaging. 2001;20(4):354–9. Narayanan R, Kurhanewicz J, Shinohara K, Crawford ED, Simoneau A, Suri JS. MRI-ultrasound registration for targeted prostate biopsy. IEEE Int Symp Biomed Imaging Nano Macro. 2009;2009:991–4. Ukimura O, Desai MM, Palmer S, Valencerina S, Gross M, Abreu AL, Aron M, Gill IS. 3-Dimensional elastic registration system of prostate biopsy location by real-time 3-dimensional transrectal ultrasound guidance with magnetic resonance/transrectal ultrasound image fusion. J Urol. 2012;187(3):1080–6. Panayides A, Antoniou Z, Pattichis MS, Pattichis CS, Constantinides AG. High efficiency video coding for ultrasound video communication in m-health systems. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2170–3. Panayides AS, Pattichis MS, Constantinides AG, Pattichis CS. M-health medical video communication systems: an overview of design approaches and recent advances. In: 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC); 2013. p. 7253–7256. Bikos AN, Sklavos N. LTE/SAE security issues on 4G wireless networks. IEEE Secur Priv. 2013;11(2):55–62. Cao J, Ma M, Li H, Zhang Y, Luo Z. A survey on security aspects for LTE and LTE-A networks. IEEE Commun Surv Tutor. 2014;16(1):283–302. Augestad KM, Bellika JG, Budrionis A, Chomutare T, Lindsetmo R-O, Patel H, Delaney C. Surgical telementoring in knowledge translation–clinical outcomes and educational benefits: a comprehensive review. Surg Innov. 2013;20(3):273–81. Santomauro M, Reina GA, Stroup SP, L’Esperance JO. Telementoring in robotic surgery. Curr Opin Urol. 2013;23(2):141–5. Surgery DV. The da Vinci surgical system. 2015. http://www.davincisurgery.com/da-vinci-cardiac/da-vinci-surgical-system/. Accessed 06 Dec 2015. Hannaford B, Rosen J, Friedman DW, King H, Roan P, Cheng L, Glozman D, Ma J, Kosari SN, White L. Raven-II: an open platform for surgical robotics research. IEEE Trans Biomed Eng. 2013;60(4):954–9. Panayides AS, Pattichis MS, Loizou CP, Pantziaris M, Constantinides AG, Pattichis CS. An effective ultrasound video communication system using despeckle filtering and HEVC. IEEE J Biomed Heal Inform. 2015;19(2):668–76. Mayer H, Nagy I, Knoll A, Schirmbeck EU, Bauernschmitt R. An experimental system for robotic heart surgery. In: 18th IEEE symposium on computer-based medical systems (CBMS’05); 2005. p. 55–60.