Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review

International Journal of Heat and Mass Transfer - Tập 127 - Trang 838-856 - 2018
Zubair Ahmad Qureshi1, Hafiz Muhammad Ali1, Shahab Khushnood1
1University of Engineering and Technology, Taxila, Pakistan

Tài liệu tham khảo

Farid, 1986, Solar energy storage with phase change, J. Sol. Energy Res., 4

Lane, 1986

Morcos, 1990, Investigation of a latent heat thermal energy storage system, Sol. Wind Technol., 7, 197, 10.1016/0741-983X(90)90087-I

Morrison, 1978, Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems, Sol. Energy, 20, 57, 10.1016/0038-092X(78)90141-X

Tyagi, 2007, PCM thermal storage in buildings: a state of art, Renew. Sustain. Energy Rev., 11, 1146, 10.1016/j.rser.2005.10.002

Sarier, 2012, Organic phase change materials and their textile applications: an overview, Thermochim. Acta, 540, 7, 10.1016/j.tca.2012.04.013

Lane, 1986, vol. 2

Ma, 2017, Binary eutectic mixtures of stearic acid-n-butyramide/n-octanamide as phase change materials for low temperature solar heat storage, Appl. Therm. Eng., 111, 1052, 10.1016/j.applthermaleng.2016.10.004

Watanabe, 1993, Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures, Heat Recovery Syst. CHP, 13, 57, 10.1016/0890-4332(93)90025-Q

H. Mehling, S. Hiebler, F. Ziegler, Latent heat storage using a PCM-graphite composite material, in: Proceedings of TERRASTOCK, 2000.

Jegadheeswaran, 2012, Conductivity particles dispersed organic and inorganic phase change materials for solar energy storage–an exergy based comparative evaluation, Energy Procedia, 14, 643, 10.1016/j.egypro.2011.12.989

Shukla, 2008, Thermal cycling test of few selected inorganic and organic phase change materials, Renewable Energy, 33, 2606, 10.1016/j.renene.2008.02.026

Alshaer, 2015, Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment, Energy Convers. Manage., 89, 873, 10.1016/j.enconman.2014.10.045

Rao, 2011, Thermal properties of paraffin wax-based composites containing graphite, Energy Sources, Part A: Recov., Utilizat., Environ. Effects, 33, 587, 10.1080/15567030903117679

Fan, 2011, Thermal conductivity enhancement of phase change materials for thermal energy storage: a review, Renew. Sustain. Energy Rev., 15, 24, 10.1016/j.rser.2010.08.007

Harish, 2012, Temperature dependent thermal conductivity increase of aqueous nanofluid with single walled carbon nanotube inclusion, Mater. Express, 2, 213, 10.1166/mex.2012.1074

Cui, 2011, The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials, Sol. Energy Mater. Sol. Cells, 95, 1208, 10.1016/j.solmat.2011.01.021

Tian, 2017, Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage, Appl. Energy, 204, 525, 10.1016/j.apenergy.2017.07.027

Wang, 2009, Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride, Appl. Energy, 86, 1196, 10.1016/j.apenergy.2008.10.020

Wang, 2010, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers, Sol. Energy, 84, 339, 10.1016/j.solener.2009.12.004

Harish, 2015, Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets, Appl. Therm. Eng., 80, 205, 10.1016/j.applthermaleng.2015.01.056

Li, 2013, A nano-graphite/paraffin phase change material with high thermal conductivity, Appl. Energy, 106, 25, 10.1016/j.apenergy.2013.01.031

Srinivasan, 2017, Effect of temperature and graphite particle fillers on thermal conductivity and viscosity of phase change material n-eicosane, Int. J. Heat Mass Transf., 114, 318, 10.1016/j.ijheatmasstransfer.2017.06.081

Harish, 2017, Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions, Appl. Therm. Eng., 114, 1240, 10.1016/j.applthermaleng.2016.10.109

Mehrali, 2014, Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage, Appl. Energy, 135, 339, 10.1016/j.apenergy.2014.08.100

Ye, 2014, Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage, Particuology, 15, 56, 10.1016/j.partic.2013.05.001

Liu, 2017, Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material, Thermochim. Acta, 647, 15, 10.1016/j.tca.2016.11.010

Al Ghossein, 2017, Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage, Int. J. Heat Mass Transf., 107, 697, 10.1016/j.ijheatmasstransfer.2016.11.059

Yang, 2017, Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets, Chem. Eng. J., 315, 481, 10.1016/j.cej.2017.01.045

Liu, 2018, Novel light–driven CF/PEG/SiO2 composite phase change materials with high thermal conductivity, Sol. Energy Mater. Sol. Cells, 174, 538, 10.1016/j.solmat.2017.09.045

Zhang, 2017, Preparation and thermal properties of short carbon fibers/erythritol phase change materials, Energy Convers. Manage., 136, 220, 10.1016/j.enconman.2017.01.023

Tang, 2014, A full-band sunlight-driven carbon nanotube/PEG/SiO 2 composites for solar energy storage, Sol. Energy Mater. Sol. Cells, 123, 7, 10.1016/j.solmat.2013.12.022

Şahan, 2015, Improving thermal conductivity phase change materials—a study of paraffin nanomagnetite composites, Sol. Energy Mater. Sol. Cells, 137, 61, 10.1016/j.solmat.2015.01.027

Im, 2011, The effect of Al2O3 doped multi-walled carbon nanotubes on the thermal conductivity of Al2O3/epoxy terminated poly (dimethylsiloxane) composites, Carbon, 49, 3503, 10.1016/j.carbon.2011.04.049

Tang, 2014, PEG/SiO2–Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity, Mater. Chem. Phys., 144, 162, 10.1016/j.matchemphys.2013.12.036

Yang, 2018, Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability, Sol. Energy Mater. Sol. Cells, 174, 56, 10.1016/j.solmat.2017.08.025

Nomura, 2015, High thermal conductivity phase change composite with percolating carbon fiber network, Appl. Energy, 154, 678, 10.1016/j.apenergy.2015.05.042

Xiao, 2013, Preparation and thermal characterization of paraffin/metal foam composite phase change material, Appl. Energy, 112, 1357, 10.1016/j.apenergy.2013.04.050

Wang, 2016, Heat transfer enhancement of phase change composite material: Copper foam/paraffin, Renewable Energy, 96, 960, 10.1016/j.renene.2016.04.039

Hussain, 2016, Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite, Energy, 115, 209, 10.1016/j.energy.2016.09.008

Li, 2017, Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage, Int. J. Heat Mass Transf., 115, 148, 10.1016/j.ijheatmasstransfer.2017.07.056

Li, 2017, Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage, Energy Convers. Manage., 149, 1, 10.1016/j.enconman.2017.07.019

Tang, 2015, Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape-stabilized phase change materials with enhanced thermal conductivity, Sol. Energy Mater. Sol. Cells, 141, 218, 10.1016/j.solmat.2015.05.045

Cheng, 2018, Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials, Int. J. Heat Mass Transf., 116, 507, 10.1016/j.ijheatmasstransfer.2017.09.032

Wang, 2017, Experimental study on effective thermal conductivity of microcapsules based phase change composites, Int. J. Heat Mass Transf., 109, 930, 10.1016/j.ijheatmasstransfer.2017.02.068

Karaman, 2011, Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 95, 1647, 10.1016/j.solmat.2011.01.022

Shin, 2005, Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). IV. Performance properties and hand of fabrics treated with PCM microcapsules, J. Appl. Polym. Sci., 97, 910, 10.1002/app.21846

Kim, 2005, Preparation and properties of microencapsulated octadecane with waterborne polyurethane, J. Appl. Polym. Sci., 96, 1596, 10.1002/app.21603

Chow, 1996, Thermal conductivity enhancement for phase change storage media, Int. Commun. Heat Mass Transfer, 23, 91, 10.1016/0735-1933(95)00087-9

Yuan, 2015, Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance, Sol. Energy Mater. Sol. Cells, 143, 29, 10.1016/j.solmat.2015.06.034

Zhang, 2010, Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance, J. Colloid Interface Sci., 343, 246, 10.1016/j.jcis.2009.11.036

Yu, 2014, Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation, Appl. Energy, 114, 632, 10.1016/j.apenergy.2013.10.029

Zhang, 2017, Shape-stabilized composite phase change materials with high thermal conductivity based on stearic acid and modified expanded vermiculite, Renewable Energy, 112, 113, 10.1016/j.renene.2017.05.026

Wang, 2017, Supercooling suppression and thermal behavior improvement of erythritol as phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 171, 60, 10.1016/j.solmat.2017.06.027

Deng, 2016, Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage, Chem. Eng. J., 295, 427, 10.1016/j.cej.2016.03.068

Li, 2014, Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene, Sol. Energy Mater. Sol. Cells, 128, 48, 10.1016/j.solmat.2014.05.018

Su, 2016, Preparation and thermal properties of n–octadecane/stearic acid eutectic mixtures with hexagonal boron nitride as phase change materials for thermal energy storage, Energy Build., 131, 35, 10.1016/j.enbuild.2016.09.022

Heu, 2017, Fabrication of three-dimensional metal-graphene network phase change composite for high thermal conductivity and suppressed subcooling phenomena, Energy Convers. Manage., 149, 608, 10.1016/j.enconman.2017.07.063

Hong, 2018, Superwetting polypropylene aerogel supported form-stable phase change materials with extremely high organics loading and enhanced thermal conductivity, Sol. Energy Mater. Sol. Cells, 174, 307, 10.1016/j.solmat.2017.09.026

Giovannelli, 2017, Development of a solar cavity receiver with a short-term storage system, Energy Procedia, 1, 258, 10.1016/j.egypro.2017.10.279

Giovannelli, 2017, Charge and discharge analyses of a PCM storage system integrated in a high-temperature solar receiver, Energies, 10, 1943, 10.3390/en10121943