Recent advances on thermal conductivity enhancement of phase change materials for energy storage system: A review
Tài liệu tham khảo
Farid, 1986, Solar energy storage with phase change, J. Sol. Energy Res., 4
Lane, 1986
Morcos, 1990, Investigation of a latent heat thermal energy storage system, Sol. Wind Technol., 7, 197, 10.1016/0741-983X(90)90087-I
Morrison, 1978, Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems, Sol. Energy, 20, 57, 10.1016/0038-092X(78)90141-X
Tyagi, 2007, PCM thermal storage in buildings: a state of art, Renew. Sustain. Energy Rev., 11, 1146, 10.1016/j.rser.2005.10.002
Sarier, 2012, Organic phase change materials and their textile applications: an overview, Thermochim. Acta, 540, 7, 10.1016/j.tca.2012.04.013
Lane, 1986, vol. 2
Ma, 2017, Binary eutectic mixtures of stearic acid-n-butyramide/n-octanamide as phase change materials for low temperature solar heat storage, Appl. Therm. Eng., 111, 1052, 10.1016/j.applthermaleng.2016.10.004
Watanabe, 1993, Enhancement of charging and discharging rates in a latent heat storage system by use of PCM with different melting temperatures, Heat Recovery Syst. CHP, 13, 57, 10.1016/0890-4332(93)90025-Q
H. Mehling, S. Hiebler, F. Ziegler, Latent heat storage using a PCM-graphite composite material, in: Proceedings of TERRASTOCK, 2000.
Jegadheeswaran, 2012, Conductivity particles dispersed organic and inorganic phase change materials for solar energy storage–an exergy based comparative evaluation, Energy Procedia, 14, 643, 10.1016/j.egypro.2011.12.989
Shukla, 2008, Thermal cycling test of few selected inorganic and organic phase change materials, Renewable Energy, 33, 2606, 10.1016/j.renene.2008.02.026
Alshaer, 2015, Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment, Energy Convers. Manage., 89, 873, 10.1016/j.enconman.2014.10.045
Rao, 2011, Thermal properties of paraffin wax-based composites containing graphite, Energy Sources, Part A: Recov., Utilizat., Environ. Effects, 33, 587, 10.1080/15567030903117679
Fan, 2011, Thermal conductivity enhancement of phase change materials for thermal energy storage: a review, Renew. Sustain. Energy Rev., 15, 24, 10.1016/j.rser.2010.08.007
Harish, 2012, Temperature dependent thermal conductivity increase of aqueous nanofluid with single walled carbon nanotube inclusion, Mater. Express, 2, 213, 10.1166/mex.2012.1074
Cui, 2011, The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials, Sol. Energy Mater. Sol. Cells, 95, 1208, 10.1016/j.solmat.2011.01.021
Tian, 2017, Enhanced thermal conductivity of ternary carbonate salt phase change material with Mg particles for solar thermal energy storage, Appl. Energy, 204, 525, 10.1016/j.apenergy.2017.07.027
Wang, 2009, Enhanced thermal conductivity and thermal performance of form-stable composite phase change materials by using β-Aluminum nitride, Appl. Energy, 86, 1196, 10.1016/j.apenergy.2008.10.020
Wang, 2010, Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers, Sol. Energy, 84, 339, 10.1016/j.solener.2009.12.004
Harish, 2015, Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets, Appl. Therm. Eng., 80, 205, 10.1016/j.applthermaleng.2015.01.056
Li, 2013, A nano-graphite/paraffin phase change material with high thermal conductivity, Appl. Energy, 106, 25, 10.1016/j.apenergy.2013.01.031
Srinivasan, 2017, Effect of temperature and graphite particle fillers on thermal conductivity and viscosity of phase change material n-eicosane, Int. J. Heat Mass Transf., 114, 318, 10.1016/j.ijheatmasstransfer.2017.06.081
Harish, 2017, Enhanced thermal conductivity of phase change nanocomposite in solid and liquid state with various carbon nano inclusions, Appl. Therm. Eng., 114, 1240, 10.1016/j.applthermaleng.2016.10.109
Mehrali, 2014, Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage, Appl. Energy, 135, 339, 10.1016/j.apenergy.2014.08.100
Ye, 2014, Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage, Particuology, 15, 56, 10.1016/j.partic.2013.05.001
Liu, 2017, Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material, Thermochim. Acta, 647, 15, 10.1016/j.tca.2016.11.010
Al Ghossein, 2017, Experimental determination of temperature-dependent thermal conductivity of solid eicosane-based silver nanostructure-enhanced phase change materials for thermal energy storage, Int. J. Heat Mass Transf., 107, 697, 10.1016/j.ijheatmasstransfer.2016.11.059
Yang, 2017, Largely enhanced thermal conductivity of poly (ethylene glycol)/boron nitride composite phase change materials for solar-thermal-electric energy conversion and storage with very low content of graphene nanoplatelets, Chem. Eng. J., 315, 481, 10.1016/j.cej.2017.01.045
Liu, 2018, Novel light–driven CF/PEG/SiO2 composite phase change materials with high thermal conductivity, Sol. Energy Mater. Sol. Cells, 174, 538, 10.1016/j.solmat.2017.09.045
Zhang, 2017, Preparation and thermal properties of short carbon fibers/erythritol phase change materials, Energy Convers. Manage., 136, 220, 10.1016/j.enconman.2017.01.023
Tang, 2014, A full-band sunlight-driven carbon nanotube/PEG/SiO 2 composites for solar energy storage, Sol. Energy Mater. Sol. Cells, 123, 7, 10.1016/j.solmat.2013.12.022
Şahan, 2015, Improving thermal conductivity phase change materials—a study of paraffin nanomagnetite composites, Sol. Energy Mater. Sol. Cells, 137, 61, 10.1016/j.solmat.2015.01.027
Im, 2011, The effect of Al2O3 doped multi-walled carbon nanotubes on the thermal conductivity of Al2O3/epoxy terminated poly (dimethylsiloxane) composites, Carbon, 49, 3503, 10.1016/j.carbon.2011.04.049
Tang, 2014, PEG/SiO2–Al2O3 hybrid form-stable phase change materials with enhanced thermal conductivity, Mater. Chem. Phys., 144, 162, 10.1016/j.matchemphys.2013.12.036
Yang, 2018, Hybrid network structure of boron nitride and graphene oxide in shape-stabilized composite phase change materials with enhanced thermal conductivity and light-to-electric energy conversion capability, Sol. Energy Mater. Sol. Cells, 174, 56, 10.1016/j.solmat.2017.08.025
Nomura, 2015, High thermal conductivity phase change composite with percolating carbon fiber network, Appl. Energy, 154, 678, 10.1016/j.apenergy.2015.05.042
Xiao, 2013, Preparation and thermal characterization of paraffin/metal foam composite phase change material, Appl. Energy, 112, 1357, 10.1016/j.apenergy.2013.04.050
Wang, 2016, Heat transfer enhancement of phase change composite material: Copper foam/paraffin, Renewable Energy, 96, 960, 10.1016/j.renene.2016.04.039
Hussain, 2016, Experimental investigation of a passive thermal management system for high-powered lithium ion batteries using nickel foam-paraffin composite, Energy, 115, 209, 10.1016/j.energy.2016.09.008
Li, 2017, Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage, Int. J. Heat Mass Transf., 115, 148, 10.1016/j.ijheatmasstransfer.2017.07.056
Li, 2017, Thermal sensitive flexible phase change materials with high thermal conductivity for thermal energy storage, Energy Convers. Manage., 149, 1, 10.1016/j.enconman.2017.07.019
Tang, 2015, Synthesis and thermal properties of fatty acid eutectics and diatomite composites as shape-stabilized phase change materials with enhanced thermal conductivity, Sol. Energy Mater. Sol. Cells, 141, 218, 10.1016/j.solmat.2015.05.045
Cheng, 2018, Study of thermal conductive enhancement mechanism and selection criteria of carbon-additive for composite phase change materials, Int. J. Heat Mass Transf., 116, 507, 10.1016/j.ijheatmasstransfer.2017.09.032
Wang, 2017, Experimental study on effective thermal conductivity of microcapsules based phase change composites, Int. J. Heat Mass Transf., 109, 930, 10.1016/j.ijheatmasstransfer.2017.02.068
Karaman, 2011, Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 95, 1647, 10.1016/j.solmat.2011.01.022
Shin, 2005, Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). IV. Performance properties and hand of fabrics treated with PCM microcapsules, J. Appl. Polym. Sci., 97, 910, 10.1002/app.21846
Kim, 2005, Preparation and properties of microencapsulated octadecane with waterborne polyurethane, J. Appl. Polym. Sci., 96, 1596, 10.1002/app.21603
Chow, 1996, Thermal conductivity enhancement for phase change storage media, Int. Commun. Heat Mass Transfer, 23, 91, 10.1016/0735-1933(95)00087-9
Yuan, 2015, Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance, Sol. Energy Mater. Sol. Cells, 143, 29, 10.1016/j.solmat.2015.06.034
Zhang, 2010, Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance, J. Colloid Interface Sci., 343, 246, 10.1016/j.jcis.2009.11.036
Yu, 2014, Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation, Appl. Energy, 114, 632, 10.1016/j.apenergy.2013.10.029
Zhang, 2017, Shape-stabilized composite phase change materials with high thermal conductivity based on stearic acid and modified expanded vermiculite, Renewable Energy, 112, 113, 10.1016/j.renene.2017.05.026
Wang, 2017, Supercooling suppression and thermal behavior improvement of erythritol as phase change material for thermal energy storage, Sol. Energy Mater. Sol. Cells, 171, 60, 10.1016/j.solmat.2017.06.027
Deng, 2016, Thermal conductivity enhancement of polyethylene glycol/expanded vermiculite shape-stabilized composite phase change materials with silver nanowire for thermal energy storage, Chem. Eng. J., 295, 427, 10.1016/j.cej.2016.03.068
Li, 2014, Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene, Sol. Energy Mater. Sol. Cells, 128, 48, 10.1016/j.solmat.2014.05.018
Su, 2016, Preparation and thermal properties of n–octadecane/stearic acid eutectic mixtures with hexagonal boron nitride as phase change materials for thermal energy storage, Energy Build., 131, 35, 10.1016/j.enbuild.2016.09.022
Heu, 2017, Fabrication of three-dimensional metal-graphene network phase change composite for high thermal conductivity and suppressed subcooling phenomena, Energy Convers. Manage., 149, 608, 10.1016/j.enconman.2017.07.063
Hong, 2018, Superwetting polypropylene aerogel supported form-stable phase change materials with extremely high organics loading and enhanced thermal conductivity, Sol. Energy Mater. Sol. Cells, 174, 307, 10.1016/j.solmat.2017.09.026
Giovannelli, 2017, Development of a solar cavity receiver with a short-term storage system, Energy Procedia, 1, 258, 10.1016/j.egypro.2017.10.279
