Experimental and numerical investigation of a tube-in-tank latent thermal energy storage unit using composite PCM
Tài liệu tham khảo
Ganjehkaviri, 2016, On the optimization of energy systems: results utilization in the design process, Appl Energy, 162, 587, 10.1016/j.apenergy.2016.06.095
Kuravi, 2013, Thermal energy storage technologies and systems for concentrating solar power plants, Prog Energ Combust, 39, 285, 10.1016/j.pecs.2013.02.001
Anisur, 2013, Curbing global warming with phase change materials for energy storage, Renew Sustain Energy Rev, 18, 23, 10.1016/j.rser.2012.10.014
Mahavar, 2012, Design development and performance studies of a novel single family solar cooker, Renew Energy, 47, 67, 10.1016/j.renene.2012.04.013
Miró, 2016, Thermal energy storage (TES) for industrial waste heat (IWH) recovery: a review, Appl Energy, 179, 284, 10.1016/j.apenergy.2016.06.147
Gumus, 2009, Reducing cold-start emission from internal combustion engines by means of thermal energy storage system, Appl Therm Eng, 29, 652, 10.1016/j.applthermaleng.2008.03.044
Ling, 2015, A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling ion batteries combining phase change materials with forced-air cooling, Appl Energy, 148, 403, 10.1016/j.apenergy.2015.03.080
Yin, 2010, Thermal management of electronic components with thermal adaptation composite material, Appl Energy, 87, 3784, 10.1016/j.apenergy.2010.06.007
Hadjieva, 1992, Thermophysical properties of some paraffins applicable to thermal energy storage, Sol Energy Mater Sol C, 27, 181, 10.1016/0927-0248(92)90119-A
Nihal, 2012, Organic phase change materials and their textile applications: an overview, Thermochim Acta, 540, 7, 10.1016/j.tca.2012.04.013
Zhang, 2016, A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement, Appl Energy, 165, 472, 10.1016/j.apenergy.2015.12.043
Kamkari, 2014, Experimental investigation of phase change material melting in rectangular enclosures with horizontal partial fins, Int J Heat Mass Transfer, 78, 839, 10.1016/j.ijheatmasstransfer.2014.07.056
Jiang, 2015, Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3, Appl Energy, 137, 731, 10.1016/j.apenergy.2014.09.028
Xiao, 2014, Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage, Int J Therm Sci, 81, 94, 10.1016/j.ijthermalsci.2014.03.006
Jin HQ, Fan LW. Melting of a phase change material filled in a metal foam: a visualized study at the pore-scale using infrared imaging. In: Proceedings of the ASME 2016 Heat Transfer Summer Conference, HT2016-7338.
Li, 2016, Preparation of paraffin/porous TiO2 foams with enhanced thermal conductivity as PCM, by covering the TiO2 surface with a carbon layer, Appl Energy, 171, 37, 10.1016/j.apenergy.2016.03.010
Nada, 2015, Comprehensive parametric study of using carbon foam structures saturated with PCMs in thermal management of electronic systems, Energy Convers Manage, 105, 93, 10.1016/j.enconman.2015.07.071
Fleming, 2015, Experimental and theoretical analysis of an aluminum foam enhanced phase change thermal storage unit, Int J Heat Mass Transfer, 82, 273, 10.1016/j.ijheatmasstransfer.2014.11.022
Ezan, 2011, Experimental study on charging and discharging periods of water in a latent heat storage unit, Int J Therm Sci, 50, 205, 10.1016/j.ijthermalsci.2011.06.010
Zauner, 2016, Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM, Appl Energy, 179, 237, 10.1016/j.apenergy.2016.06.138
Kabbara, 2016, Experimental investigations of a latent heat energy storage unit using finned tubes, Appl Therm Eng, 101, 601, 10.1016/j.applthermaleng.2015.12.080
Martinelli, 2016, Experimental study of a phase change thermal energy storage with copper foam, Appl Therm Eng, 101, 247, 10.1016/j.applthermaleng.2016.02.095
Cui, 2012, Experimental investigation on the heat charging process by paraffin filled with high porosity copper foam, Appl Therm Eng, 39, 26, 10.1016/j.applthermaleng.2012.01.037
Atal, 2016, Effect of porosity of conducting matrix on a phase change energy storage device, Int J Heat Mass Trans, 93, 9, 10.1016/j.ijheatmasstransfer.2015.09.033
Xiao, 2015, Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part I – charging process, Energy, 79, 337, 10.1016/j.energy.2014.11.020
Xiao, 2015, Numerical and experimental study of heat transfer characteristics of a shell-tube latent heat storage system: Part II – discharging process, Energy, 80, 177, 10.1016/j.energy.2014.11.061
Zhang, 2016, Thermal energy storage and retrieval characteristics of a molten-salt latent heat thermal energy storage system, Appl Energy, 173, 255, 10.1016/j.apenergy.2016.04.012
Merlin, 2016, Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage, Appl Energy, 183, 491, 10.1016/j.apenergy.2016.09.007
Belusko, 2016, Effective tube-in-tank PCM thermal storage for CSP applications, Part 1: impact of tube configuration on discharging effectiveness, Sol Energy, 139, 733, 10.1016/j.solener.2015.09.042
Belusko, 2016, Effective tube-in-tank PCM thermal storage for CSP applications, Part 2: Parametric assessment and impact of latent fraction, Sol Energy, 139, 734
Morales-Ruiz, 2016, Analysis and design of a drain water heat recovery storage unit based on PCM plates, Appl Energy, 179, 1006, 10.1016/j.apenergy.2016.07.067
Xiao, 2013, Preparation and thermal characterization of paraffin/metal foam composite phase change material, Appl Energy, 112, 1357, 10.1016/j.apenergy.2013.04.050
Zhang, 2017, Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam, Appl Energy, 185, 1971, 10.1016/j.apenergy.2015.10.075
Xia, 2011
Voller, 1987, An enthalpy method for convection/diffusion phase change, Int J Numer Meth Eng, 24, 271, 10.1002/nme.1620240119
Brent, 1988, Enthalpy-porosity technique for modelling convection-diffusion phase change: application to the melting of a pure metal, Numer Heat Transfer, 13, 297, 10.1080/10407788808913615
Zhang, 2010, An overview of phase change material slurries: MPCS and CHS, Renew Sust Energ Rev, 14, 598, 10.1016/j.rser.2009.08.015
Yang, 2006
Zhang, 2006, Analyses and study for property of thermal insulation of soft polyurethane foam, Vacuum and Cryogenics, 03, 180
Calmidi, 2000, Forced convection in high porosity metal foams, J Heat Transfer, 122, 557, 10.1115/1.1287793
Bhattacharya, 2002, Thermophysical properties of high porosity metal foams, Int J Heat Mass Transfer, 45, 1017, 10.1016/S0017-9310(01)00220-4
Fourie, 2002, Pressure drop modelling in cellular metallic foams, Chem Eng Sci, 57, 2781, 10.1016/S0009-2509(02)00166-5
Merlin, 2016, Heat transfer enhancement in latent heat thermal storage systems: comparative study of different solutions and thermal contact investigation between the exchanger and the PCM, Appl Energy, 166, 107, 10.1016/j.apenergy.2016.01.012
Yang, 1994, An experimental study of natural convection heat transfer from a horizontal cylinder in high Rayleigh number laminar and turbulent regions, vol. 7, 185
